Jae Youn Cho

Learn More
Whether hypoxia contributes to airway inflammation and remodeling in asthma is unknown. In this study we used mice exposed to a hypoxic environment during allergen challenge (simulating hypoxia during an asthma exacerbation) to investigate the contribution of hypoxia to airway inflammation and remodeling. Although neither hypoxia alone, nor OVA allergen(More)
Hypoxia-inducible factor (HIF)-1α is a master regulator of inflammatory activities of myeloid cells, including neutrophils and macrophages. These studies examine the role of myeloid cell HIF-1α in regulating asthma induction and pathogenesis, and for the first time, evaluate the roles of HIF-1α and HIF-2α in the chemotactic properties of eosinophils, the(More)
BACKGROUND In this study we examined the role of Siglec-F, a receptor highly expressed on eosinophils, in contributing to mucus expression, airway remodeling, and Siglec-F ligand expression utilizing Siglec-F deficient mice exposed to chronic allergen challenge. METHODS Wild type (WT) and Siglec-F deficient mice were sensitized and challenged chronically(More)
As genetically engineered mutant mice deficient in single genes are usually generated on a C57BL/6 background, to study mast cell trafficking in mutant mice, we initially investigated whether mast cells accumulated in bronchi in C57BL/6 mice challenged with OVA allergen acutely or chronically for 1 to 3 months. The total number of bronchial mast cells were(More)
Airway remodeling in asthma is a result of persistent inflammation and epithelial damage in response to repetitive injury. Recent studies have identified several important mediators associated with airway remodeling in asthma, including transforming growth factor-β, interleukin (IL)-5, basic fibroblast growth factor, vascular endothelial growth factor,(More)
  • 1