Jae-Min Myoung

Learn More
The process modeling for the growth rate in pulsed laser deposition (PLD)-grown ZnO thin films was investigated using neural networks (NNets) based on the back-propagation (BP) algorithm and the process recipes was optimized via genetic algorithms (GAs). Two input factors were examined with respect to the growth rate as the response factor. D-optimal(More)
The effective synthesis of two-dimensional transition metal dichalcogenides alloy is essential for successful application in electronic and optical devices based on a tunable band gap. Here we show a synthesis process for Mo1-xWxS2 alloy using sulfurization of super-cycle atomic layer deposition Mo1-xWxOy. Various spectroscopic and microscopic results(More)
This work reports the self-limiting synthesis of an atomically thin, two dimensional transition metal dichalcogenides (2D TMDCs) in the form of MoS2. The layer controllability and large area uniformity essential for electronic and optical device applications is achieved through atomic layer deposition in what is named self-limiting layer synthesis (SLS); a(More)
In this paper, the neural network based modeling for electrical characteristics of the HfO 2 thin films grown by metal organic molecular beam epitaxy was investigated. The accumulation capacitance and the hysteresis index are extracted to be the main responses to examine the characteristics of the HfO 2 dielectric films. The input process parameters were(More)
We report low-temperature solution-processed p-CuO nanorods (NRs)/n-ZnO NRs heterojunction light emitting diode (LED), exploiting the native point defects of ZnO NRs. ZnO NRs were synthesized at 90 °C by using hydrothermal method while CuO NRs were synthesized at 100 °C by using microwave reaction system. The electrical properties of newly synthesized CuO(More)
A design platform for a zero drive load logic inverter consisting of p-channel Si nanowire based transistors, which controlled their operating mode through an implantation into a gate dielectric layer was demonstrated. As a result, a nanowire based class D inverter having a 4.6 gain value at V(DD) of -20 V was successfully fabricated on a substrate.
In this paper, the principal component analysis based neural network process models of the HfO<sub>2</sub> thin films are investigated. The input process parameters are extracted by analyzing the process conditions and the accumulation capacitance and the hysteresis index are extracted to be the main responses to examine the characteristics of the(More)
The process modeling for the growth rate of pulsed laser deposition (PLD)-grown ZnO thin films was investigated using neural networks (NNets) based on the back-propagation (BP) algorithm and PCA-based NNets using photoluminescence (PL) data. D-optimal experimental design was performed and the growth rate was characterized by NNets. PCA-based NNets were then(More)