Learn More
Voltage-activated ion channels open and close in response to changes in voltage, a property that is essential for generating nerve impulses. Studies on voltage-activated potassium (Kv) channels show that voltage-sensor activation is sensitive to the composition of lipids in the surrounding membrane. Here we explore the interaction of lipids with S1-S4(More)
Voltage-sensing domains enable membrane proteins to sense and react to changes in membrane voltage. Although identifiable S1-S4 voltage-sensing domains are found in an array of conventional ion channels and in other membrane proteins that lack pore domains, the extent to which their voltage-sensing mechanisms are conserved is unknown. Here we show that the(More)
The opening and closing of voltage-activated Na+, Ca2+ and K+ (Kv) channels underlies electrical and chemical signalling throughout biology, yet the structural basis of voltage sensing is unknown. Hanatoxin is a tarantula toxin that inhibits Kv channels by binding to voltage-sensor paddles, crucial helix-turn-helix motifs within the voltage-sensing domains(More)
Voltage-activated ion channels are essential for electrical signaling, yet the mechanism of voltage sensing remains under intense investigation. The voltage-sensor paddle is a crucial structural motif in voltage-activated potassium (K(v)) channels that has been proposed to move at the protein-lipid interface in response to changes in membrane voltage. Here(More)
The human 5-HT(6) receptor (5-HT(6)R) is one of the latest cloned receptors among the known 5-HT receptors. Its abundant distribution in the limbic region, which participates in the control of mood and emotion and is involved in nervous system diseases such as depression and Alzheimer disease, has caused it to generate much interest. However, the cellular(More)
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski, J.P., Bear, D.G., and Kowalczykowski, S.C. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 21-25), calling into question the role of ATP hydrolysis in the strand exchange reaction. Here, we demonstrate that the ATP gamma(More)
BACKGROUND N-type Ca2+ channels (Ca(v)2.2) play an important role in the transmission of pain signals to the central nervous system. ω-Conotoxin (CTx)-MVIIA, also called ziconotide (Prialt®), effectively alleviates pain, without causing addiction, by blocking the pores of these channels. Unfortunately, CTx-MVIIA has a narrow therapeutic window and produces(More)
Kurtoxin is a 63-amino acid polypeptide isolated from the venom of the South African scorpion Parabuthus transvaalicus. It is the first and only peptide ligand known to interact with Cav3 (T-type) voltage-gated Ca(2+) channels with high affinity and to modify the voltage-dependent gating of these channels. Here we describe the nuclear magnetic resonance(More)
SGTx1 is a peptide toxin isolated from the venom of the spider Scodra griseipes that has been shown to inhibit outward K(+) currents in rat cerebellar granule neurons. Although its amino acid sequence is known to be highly (76%) homologous with that of hanatoxin (HaTx), a well-characterized modifier of Kv2.1 channel gating, the structural and functional(More)
RecA protein promotes a substantial DNA strand exchange reaction in the presence of adenosine 5'-O-3-(thio)triphosphate (ATP gamma S) (Menetski et al., 1990), calling into question the role of ATP hydrolysis in this reaction. We demonstrate here that the ATP gamma S-mediated process is restricted to homologous strand exchange reactions involving three(More)