Learn More
It is unclear how cancer cells coordinate glycolysis and biosynthesis to support rapidly growing tumors. We found that the glycolytic enzyme phosphoglycerate mutase 1 (PGAM1), commonly upregulated in human cancers due to loss of TP53, contributes to biosynthesis regulation in part by controlling intracellular levels of its substrate, 3-phosphoglycerate(More)
Peroxiredoxins (Prxs) are a group of peroxidases containing a cysteine thiol at their catalytic site. During peroxidase catalysis, the catalytic cysteine, referred to as the peroxidatic cysteine (C(P)), cycles between thiol (C(P)-SH) and disulfide (-S-S-) states via a sulfenic (C(P)-SOH) intermediate. Hyperoxidation of the C(P) thiol to its sulfinic(More)
Mitochondrial pyruvate dehydrogenase complex (PDC) is crucial for glucose homeostasis in mammalian cells. The current understanding of PDC regulation involves inhibitory serine phosphorylation of pyruvate dehydrogenase (PDH) by PDH kinase (PDK), whereas dephosphorylation of PDH by PDH phosphatase (PDP) activates PDC. Here, we report that lysine acetylation(More)
The oxidative pentose phosphate pathway (PPP) contributes to tumour growth, but the precise contribution of 6-phosphogluconate dehydrogenase (6PGD), the third enzyme in this pathway, to tumorigenesis remains unclear. We found that suppression of 6PGD decreased lipogenesis and RNA biosynthesis and elevated ROS levels in cancer cells, attenuating cell(More)
The role of mitochondria in cancer is controversial. Using a genome-wide shRNA screen, we now show that tumours reprogram a network of mitochondrial dynamics operative in neurons, including syntaphilin (SNPH), kinesin KIF5B and GTPase Miro1/2 to localize mitochondria to the cortical cytoskeleton and power the membrane machinery of cell movements. When(More)
Many human cancers share similar metabolic alterations, including the Warburg effect. However, it remains unclear whether oncogene-specific metabolic alterations are required for tumor development. Here we demonstrate a "synthetic lethal" interaction between oncogenic BRAF V600E and a ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA lyase (HMGCL). HMGCL(More)
Mitochondria must buffer the risk of proteotoxic stress to preserve bioenergetics, but the role of these mechanisms in disease is poorly understood. Using a proteomics screen, we now show that the mitochondrial unfoldase-peptidase complex ClpXP associates with the oncoprotein survivin and the respiratory chain Complex II subunit succinate dehydrogenase B(More)
BACKGROUND Small molecule inhibitors of phosphatidylinositol-3 kinase (PI3K) have been developed as molecular therapy for cancer, but their efficacy in the clinic is modest, hampered by resistance mechanisms. METHODS We studied the effect of PI3K therapy in patient-derived tumor organotypic cultures (from five patient samples), three glioblastoma (GBM)(More)
Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP(+) binding to(More)
Survivin promotes cell division and suppresses apoptosis in many human cancers, and increased abundance correlates with metastasis and poor prognosis. We showed that a pool of survivin that localized to the mitochondria of certain tumor cell lines enhanced the stability of oxidative phosphorylation complex II, which promoted cellular respiration. Survivin(More)