Learn More
The inner membrane of the mitochondrion folds inwards, forming the cristae. This folding allows a greater amount of membrane to be packed into the mitochondrion. The data in this study demonstrate that subunits e and g of the mitochondrial ATP synthase are involved in generating mitochondrial cristae morphology. These two subunits are non-essential(More)
Blue native polyacrylamide gel electrophoresis (BN-PAGE) analyses of detergent mitochondrial extracts have provided evidence that the yeast ATP synthase could form dimers. Cross-linking experiments performed on a modified version of the i-subunit of this enzyme indicate the existence of such ATP synthase dimers in the yeast inner mitochondrial membrane. We(More)
Subunits e and g of Saccharomyces cerevisiae ATP synthase are required to maintain ATP synthase dimeric forms. Mutants devoid of these subunits display anomalous mitochondrial morphologies. An expression system regulated by doxycycline was used to modulate the expression of the genes encoding the subunits e and g. A decrease in the amount of subunit e(More)
Cross-linking experiments showed that the supernumerary subunit i is close to the interface between two ATP synthases. These data were used to demonstrate the presence of ATP synthase dimers in the inner mitochondrial membrane of Saccharomyces cerevisiae. A cysteine residue was introduced into the inter-membrane space located C-terminal part of subunit i.(More)
The involvement of the b-subunit, subunit 4 in yeast, a component of the peripheral stalk of the ATP synthase, in the dimerization/oligomerization process of this enzyme was investigated. Increasing deletions were introduced by site-directed mutagenesis in the loop located in the mitochondrial intermembrane space and linking the two transmembrane (TM)(More)
A conserved putative dimerization GxxxG motif located in the unique membrane-spanning segment of the ATP synthase subunit e was altered in yeast both by insertion of an alanine residue and by replacement of glycine by leucine residues. These alterations led to the loss of subunit g and the loss of dimeric and oligomeric forms of the yeast ATP synthase.(More)
We have identified a yeast nuclear gene (FMC1) that is required at elevated temperatures (37 degrees C) for the formation/stability of the F(1) sector of the mitochondrial ATP synthase. Western blot analysis showed that Fmc1p is a soluble protein located in the mitochondrial matrix. At elevated temperatures in yeast cells lacking Fmc1p, the alpha-F(1) and(More)
It is now clearly established that dimerization of the F(1)F(o) ATP synthase takes place in the mitochondrial inner membrane. Interestingly, oligomerization of this enzyme seems to be involved in cristae morphogenesis. As they were able to form homodimers, subunits 4, e, and g have been proposed as potential ATP synthase dimerization subunits. In this(More)
The mammalian mitochondrial ATP synthase is composed of at least 16 polypeptides. With the exception of coupling factor F(6), there are likely yeast homologs for each of these polypeptides. There are no obvious yeast homologs of F(6), as predicted from primary sequence comparison of the putative peptides encoded by the open reading frames in the yeast(More)
The N-terminal portion of the mitochondrial b-subunit is anchored in the inner mitochondrial membrane by two hydrophobic segments. We investigated the role of the first membrane-spanning segment, which is absent in prokaryotic and chloroplastic enzymes. In the absence of the first membrane-spanning segment of the yeast subunit (subunit 4), a strong decrease(More)