Learn More
Recent identification of new selenocysteine-containing proteins has revealed relationships between the two trace elements selenium (Se) and iodine and the hormone network. Several selenoproteins participate in the protection of thyrocytes from damage by H(2)O(2) produced for thyroid hormone biosynthesis. Iodothyronine deiodinases are selenoproteins(More)
The pituitary hormone thyrotropin stimulates the function, expression of differentiation and growth of thyrocytes by cyclic AMP-dependent mechanisms. Tissue hyperplasia and hyperthyroidism are therefore expected to result when activation of the adenylyl cyclase-cAMP cascade is unregulated. This is observed in several situations, including when somatic(More)
TSH via cAMP, and various growth factors, in cooperation with insulin or IGF-I stimulate cell cycle progression and proliferation in various thyrocyte culture systems, including rat thyroid cell lines (FRTL-5, WRT, PC Cl3) and primary cultures of rat, dog, sheep and human thyroid. The available data on cell signaling cascades, cell cycle kinetics, and cell(More)
Bridging the gap between animal or in vitro models and human disease is essential in medical research. Researchers often suggest that a biological mechanism is relevant to human cancer from the statistical association of a gene expression marker (a signature) of this mechanism, that was discovered in an experimental system, with disease outcome in humans.(More)
The uptake of radioactive iodide or chloride by plasma membrane vesicles of bovine thyroid was studied by a rapid filtration technique. A Na(+)-I- cotransport was demonstrated. When this Na(+)-I- cotransport is inactive (i.e., at 4 degrees C and in the absence of Na+), an uptake of iodide above chemical equilibrium could be induced, driven by the membrane(More)
Detection of autoantibodies to the TSH receptor (TSH-R) in Graves' disease has found widespread use in clinical routine and is performed mostly by commercial RRAs measuring TSH binding inhibitory activity. We report in this study on a second generation TSH binding inhibitory assay using the human recombinant TSH-R with two major improvements: 1) superior(More)
The thyrotropin receptor (TSHR), a member of the large family of G protein-coupled receptors, controls both the function and growth of thyroid cells via stimulation of adenylyl cyclase. We report two different mutations in the TSHR gene of affected members of two large pedigrees with non-autoimmune autosomal dominant hyperthyroidism (toxic thyroid(More)
Thyrotropin is the primary hormone that, via one heptahelical receptor, regulates thyroid cell functions such as secretion, specific gene expression, and growth. In human thyroid, thyrotropin receptor activation leads to stimulation of the adenylyl cyclase and phospholipase C cascades. However, the G proteins involved in thyrotropin receptor action have(More)
A total of 33 different autonomous hot nodules from 31 patients, originating mainly from Belgium, were investigated for the presence of somatic mutations in the TSH receptor and Gs alpha genes. This constitutes an extension of our previous study, including the first 11 nodules of the series. The complete coding sequence of the TSH receptor gene and the(More)