Learn More
Textile-based sensors offer an unobtrusive method of continually monitoring physiological parameters during daily activities. Chemical analysis of body fluids, noninvasively, is a novel and exciting area of personalized wearable healthcare systems. BIOTEX was an EU-funded project that aimed to develop textile sensors to measure physiological parameters and(More)
The clinical demand for a device to monitor blood pressure (BP) in ambulatory scenarios with minimal use of inflation cuffs is increasing. Based on the so-called pulse wave velocity (PWV) principle, this paper introduces and evaluates a novel concept of BP monitor that can be fully integrated within a chest sensor. After a preliminary calibration, the(More)
LTMS-S is a new wearable system for the monitoring of several physiological signals--including a two-lead electrocardiogram (ECG)--and parameters, such as the heart rate, the breathing rate, the peripheral oxygen saturation (SpO2), the core body temperature (CBT), and the physical activity. All signals are measured using only three sensors embedded within a(More)
Sweat analysis can provide a valuable insight into a persons well-being. Here we present wearable textile-based sensors that can provide real-time information regarding sweat activity. A pH sensitive dye incorporated into a fabric fluidic system is used to determine sweat pH. To detect the onset of sweat activity a sweat rate sensor is incorporated into a(More)
Many cardiorespiratory physiological signals can be measured from the chest skin. When measured at many spots, some of them like EIT (Electrical Impedance Tomography) produce images. Classical approaches cannot practically be used to make wearables with a large number of sensors, because the sensing points are connected to a bulky centralized electronics(More)
  • 1