Learn More
In many cell types, glycosylphosphatidylinositol (GPI)-anchored proteins are sequestered in detergent-resistant membrane rafts. These are plasma membrane microdomains enriched in glycosphingolipids and cholesterol and are suggested to be platforms for cell signaling. Concomitant with the synthesis of myelin glycosphingolipids, maturing oligodendrocytes(More)
Fyn kinase plays an important role during myelination and has been shown to promote morphological differentiation of cultured oligodendrocytes. We analyzed the downstream targets of Fyn kinase in oligodendrocytes. Because process outgrowth and wrapping of axons involve cytoskeletal rearrangement, we focused on cytoskeletal proteins linked to Fyn. Here we(More)
The myelin sheath synthesized by oligodendrocytes insulates central nervous system axons and is a specialized subdomain of the plasma membrane, containing a restricted pattern of proteins and lipids. Myelin is enriched in glycosphingolipids and cholesterol, a lipid environment favored by glycosylphosphatidylinositol (GPI)-anchored proteins, which associate(More)
Myelin is a specialized membrane enriched in glycosphingolipids and cholesterol that contains a limited spectrum of proteins. We investigated the assembly of myelin components by oligodendrocytes and analyzed the role of lipid-protein interactions in this process. Proteolipid protein (PLP), the major myelin protein, was recovered from cultured(More)
Reciprocal interactions between neurons and oligodendrocytes are not only crucial for myelination, but also for long-term survival of axons. Degeneration of axons occurs in several human myelin diseases, however the molecular mechanisms of axon-glia communication maintaining axon integrity are poorly understood. Here, we describe the signal-mediated(More)
Membrane currents in cultured murine oligodendrocytes and their precursors were characterized using the patch-clamp technique. Prior to recording, cells were identified by immunofluorescence using monoclonal antibodies characteristic of two types of precursor cells and two differentiation stages of oligodendrocytes. The most immature, A2B5 antigen-positive(More)
During early neural development, the lineage specification of initially pluripotent progenitor cells is associated with proliferation, differentiation, and migration. Oligodendroglial progenitor cells migrate from their sites of origin to reach the axons that they will myelinate. We have described a cell-surface protein, AN2, expressed by oligodendroglial(More)
Myelination by oligodendrocytes in the CNS involves the migration to and recognition and ensheathment of axons. These distinct developmental phases of myelination are assumed to involve the interplay of a precisely regulated set of cell adhesion molecules expressed by both neurons and glial cells. These molecules remain largely unelucidated. In this paper(More)
NG2 cells, the fourth type of glia in the mammalian CNS, receive synaptic input from neurons. The function of this innervation is unknown yet. Postsynaptic changes in intracellular Ca(2+)-concentration ([Ca(2+)](i)) might be a possible consequence. We employed transgenic mice with fluorescently labeled NG2 cells to address this issue. To identify(More)
Central nervous system myelination requires the synthesis of large amounts of myelin basic protein (MBP) at the axon-glia contact site. MBP messenger RNA (mRNA) is transported in RNA granules to oligodendroglial processes in a translationally silenced state. This process is regulated by the trans-acting factor heterogeneous nuclear ribonucleoprotein (hnRNP)(More)