Learn More
Protein lysine methyltransferases G9a and GLP modulate the transcriptional repression of a variety of genes via dimethylation of Lys9 on histone H3 (H3K9me2) as well as dimethylation of non-histone targets. Here we report the discovery of UNC0638, an inhibitor of G9a and GLP with excellent potency and selectivity over a wide range of epigenetic and(More)
Ras proteins function in stimulating cell proliferation and differentiation through the activation of Raf-dependent and Raf-independent signal transduction pathways and the subsequent activation of specific transcription factors. The transcription factor NF-kappaB has been widely studied as a regulator of genes involved in immune and inflammatory responses.(More)
EZH2 or EZH1 is the catalytic subunit of the polycomb repressive complex 2 that catalyzes methylation of histone H3 lysine 27 (H3K27). The trimethylation of H3K27 (H3K27me3) is a transcriptionally repressive post-translational modification. Overexpression of EZH2 and hypertrimethylation of H3K27 have been implicated in a number of cancers. Several selective(More)
We describe the discovery of UNC1215, a potent and selective chemical probe for the methyllysine (Kme) reading function of L3MBTL3, a member of the malignant brain tumor (MBT) family of chromatin-interacting transcriptional repressors. UNC1215 binds L3MBTL3 with a K(d) of 120 nM, competitively displacing mono- or dimethyllysine-containing peptides, and is(More)
Tumors frequently contain mutations in ras genes, resulting in constitutive activation of Ras-activated signaling pathways. The ultimate targets of these signal transduction cascades are transcription factors required for cellular proliferation. Understanding how constitutive activation of Ras contributes to tumorigenesis requires an understanding of both(More)
Protein lysine methyltransferase G9a, which catalyzes methylation of lysine 9 of histone H3 (H3K9) and lysine 373 (K373) of p53, is overexpressed in human cancers. Genetic knockdown of G9a inhibits cancer cell growth, and the dimethylation of p53 K373 results in the inactivation of p53. Initial SAR exploration of the 2,4-diamino-6,7-dimethoxyquinazoline(More)
Proteins which bind methylated lysines ("readers" of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state.(More)
The discovery of small molecules targeting the >80 enzymes that add (methyltransferases) or remove (demethylases) methyl marks from lysine and arginine residues, most notably present in histone tails, may yield unprecedented chemotherapeutic agents and facilitate regenerative medicine. To better enable chemical exploration of these proteins, we have(More)
Target specificity and off-target liabilities are routinely monitored during the early phases of drug discovery for most kinase projects. Typically these criteria are evaluated using a profiling panel comprised of a diverse collection of in vitro kinase assays and relates compound structure to potency and selectivity. The success of these efforts has led to(More)