Learn More
The ABC model, which was accepted for almost a decade as a paradigm for flower development in angiosperms, has been subjected recently to a significant modification with the introduction of the new class of E-function genes. This function is required for the proper action of the B- and C-class homeotic proteins and is provided in Arabidopsis by the(More)
Many plant species including temperate grasses require vernalization in order to flower. Vernalization is the process of promotion of flowering after exposure to prolonged periods of cold. To investigate the vernalization response in monocots, the expression patterns of about 1,500 unique genes of Lolium perenne were analyzed by a cDNA microarray approach,(More)
BACKGROUND Plant MADS box proteins play important roles in a plethora of developmental processes. In order to regulate specific sets of target genes, MADS box proteins dimerize and are thought to assemble into multimeric complexes. In this study a large-scale yeast three-hybrid screen is utilized to provide insight into the higher-order complex formation(More)
Several genome-wide studies demonstrated that alternative splicing (AS) significantly increases the transcriptome complexity in plants. However, the impact of AS on the functional diversity of proteins is difficult to assess using genome-wide approaches. The availability of detailed sequence annotations for specific genes and gene families allows for a more(More)
TCP proteins are plant-specific transcription factors, which are known to have a wide range of functions in different plant species such as in leaf development, flower symmetry, shoot branching, and senescence. Only a small number of TCP genes has been characterised from tomato (Solanum lycopersicum). Here we report several functional features of the(More)
Aphids induce many transcriptional perturbations in their host plants, but the signalling cascades responsible and the effects on plant resistance are largely unknown. Through a genome-wide association (GWA) mapping study in Arabidopsis thaliana, we identified WRKY22 as a candidate gene associated with feeding behaviour of the green peach aphid, Myzus(More)
Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single(More)
Plants adjust their development and architecture to small variations in ambient temperature. In a time in which temperatures are rising world-wide, the mechanism by which plants are able to sense temperature fluctuations and adapt to it, is becoming of special interest. By performing RNA-sequencing on two Arabidopsis accession and one Brassica species(More)
  • 1