Jacqueline Boutin

Learn More
13 ABSTRACT | It is now well understood that data on soil 14 moisture and sea surface salinity (SSS) are required to improve 15 meteorological and climate predictions. These two quantities 16 are not yet available globally or with adequate temporal or 17 spatial sampling. It is recognized that a spaceborne L-band 18 radiometer with a suitable antenna is the(More)
| It is now well understood that data on soil moisture and sea surface salinity (SSS) are required to improve meteorological and climate predictions. These two quantities are not yet available globally or with adequate temporal or spatial sampling. It is recognized that a spaceborne L-band radiometer with a suitable antenna is the most promising way of(More)
SMOS (Soil Moisture and Ocean Salinity, European Space Agency) is the first satellite mission addressing the challenge of measuring sea surface salinity from space. It uses an L-band microwave interferometric radiometer with aperture synthesis (MIRAS) that generates brightness temperature images, from which both geophysical variables are computed. The(More)
Soil Moisture and Ocean Salinity (SMOS) is an Earth Explorer Opportunity Mission from the European Space Agency with a launch date in 2007. Its goal is to produce global maps of soil moisture and ocean salinity variables for climatic studies using a new dual-polarization L-band (1400–1427 MHz) radiometer Microwave Imaging Radiometer by Aperture Synthesis(More)
Multi-angular images of the brightness temperature $(T_{rm B})$ of the Earth at 1.4 GHz are reconstructed from the Soil Moisture and Ocean Salinity (SMOS) satellite sensor data since end 2009. Sea surface salinity (SSS) products remote sensing from space is being attempted using these data over the world oceans. The quality of the first version of the(More)
The L-band interferometric radiometer onboard the Soil Moisture and Ocean Salinity mission will measure polarized brightness temperatures (Tb). The measurements are affected by strong radiometric noise. However, during a satellite overpass, numerous measurements are acquired at various incidence angles at the same location on the Earth’s surface. The sea(More)
[1] Soil moisture and ocean salinity at surface level can be measured by passive microwave remote sensing at L-band. To provide global coverage data of soil moisture and ocean salinity with three-day revisit time, the Earth Explorer Opportunity Mission SMOS (Soil Moisture and Ocean Salinity) was selected by ESA (European Space Agency) in May 1999. SMOS(More)
Sea surface salinity can be measured by passive microwave remote sensing at L-band. In May 1999, the European Space Agency (ESA) selected the Soil Moisture and Ocean Salinity (SMOS) Earth Explorer Opportunity Mission to provide global coverage of soil moisture and ocean salinity. To determine the effect of wind on the sea surface emissivity, ESA sponsored(More)
The results from two field experiments in the Mediterranean Sea are used to study the wind speed dependence of brightness temperature at L-band. During the EuroSTARRS airborne experiment, an L-band radiometer made measurements across a large wind speed gradient, enabling us to study this dependence at high wind speed. We compare our results with a two-scale(More)