Learn More
Addition of insulin-like growth factor I (IGF-I) to quiescent breast tumor-derived MCF-7 cells causes stimulation of cyclin D1 synthesis, hyperphosphorylation of the retinoblastoma protein pRb, DNA synthesis, and cell division. All of these effects are independent of the mitogen-activated protein kinase (MAPK) pathway since none of them is blocked by(More)
Detachment of the rear of the cell from its substratum is an important aspect of locomotion. The signaling routes involved in this adhesive release are largely unknown. One of the few candidate proteins to play a role is RhoA, because activation of RhoA in many cell types leads to contraction, a mechanism probably involved in detachment. To study the role(More)
Gap junctions mediate cell-cell communication in almost all tissues, but little is known about their regulation by physiological stimuli. Using a novel single-electrode technique, together with dye coupling studies, we show that in cells expressing gap junction protein connexin43, cell-cell communication is rapidly disrupted by G protein-coupled receptor(More)
Serum stimulation of quiescent fibroblasts leads to a dramatic depolarization of the plasma membrane; however, the identity of the active serum factor(s) and the underlying mechanism are unknown. We find that this serum activity is attributable to albumin-bound lysophosphatidic acid (LPA) acting on its own G protein-coupled receptor, and that membrane(More)
Signal regulatory protein alpha (SIRPalpha) is a glycoprotein receptor that recruits and signals via the tyrosine phosphatases SHP-1 and SHP-2. In macrophages SIRPalpha can negatively regulate the phagocytosis of host cells and the production of tumor necrosis factor alpha. Here we provide evidence that SIRPalpha can also stimulate macrophage activities, in(More)
In engineered bone grafts, the combined actions of bone-forming cells, matrix and bioactive stimuli determine the eventual performance of the implant. The current notion is that well-built 3D constructs include the biological elements that recapitulate native bone tissue structure to achieve bone formation once implanted. The relatively new technology of(More)
The alpha 2-adrenergic receptors are linked to inhibition of adenylylcyclase and, under certain circumstances, to stimulation of phospholipid hydrolysis via pertussis toxin-sensitive G proteins. Here we show that alpha 2-adrenergic receptors can couple to an alternative signaling pathway. When expressed in Rat-1 cells, stimulation of the alpha 2A receptor,(More)
Organ or tissue printing, a novel approach in tissue engineering, creates layered, cell-laden hydrogel scaffolds with a defined three-dimensional (3D) structure and organized cell placement. In applying the concept of tissue printing for the development of vascularized bone grafts, the primary focus lies on combining endothelial progenitors and bone marrow(More)
Organ printing, a novel approach in tissue engineering, applies layered computer-driven deposition of cells and gels to create complex 3-dimensional cell-laden structures. It shows great promise in regenerative medicine, because it may help to solve the problem of limited donor grafts for tissue and organ repair. The technique enables anatomical cell(More)
The use of fluorochromes in bone research is a widely accepted technique that dates back to the 1950s. Several pioneers, such as Harold Frost, have thoroughly investigated the potential of fluorochrome use for the study on bone formation and bone remodeling dynamics. Since the development of bone tissue engineering, a renewed interest in the benefits of(More)