Jacqueline A. Servin

Learn More
Insertion and deletion (indel)-based analyses have great potential for rooting the tree of life, but their use has been limited because they require ubiquitous sequences that have not been horizontally/laterally transferred. Very few such sequences exist. Here we describe and demonstrate a new algorithm that can use nonubiquitous sequences for rooting. This(More)
Directed indels, insertions or deletions within paralogous genes, have the potential to root the tree of life. Here we apply the top-down rooting algorithm to indels found in PyrD (dihydroorotate dehydrogenase), a key enzyme involved in the de novo biosynthesis of pyrimidines, and HisA (P-ribosylformimino-AICAR-P-isomerase), an essential enzyme in the(More)
Protein phosphatases are integral components of the cellular signaling machinery in eukaryotes, regulating diverse aspects of growth and development. The genome of the filamentous fungus and model organism Neurospora crassa encodes catalytic subunits for 30 protein phosphatase genes. In this study, we have characterized 24 viable N. crassa phosphatase(More)
Heterotrimeric G protein signaling is essential for normal hyphal growth in the filamentous fungus Neurospora crassa. We have previously demonstrated that the non-receptor guanine nucleotide exchange factor RIC8 acts upstream of the Gα proteins GNA-1 and GNA-3 to regulate hyphal extension. Here we demonstrate that regulation of hyphal extension results at(More)
A rooted tree of life provides a framework to answer central questions about the evolution of life. Here we review progress on rooting the tree of life and introduce a new root of life obtained through the analysis of indels, insertions and deletions, found within paralogous gene sets. Through the analysis of indels in eight paralogous gene sets, the root(More)
G protein-coupled receptors (GPCRs) regulate facets of growth, development, and environmental sensing in eukaryotes, including filamentous fungi. The largest predicted GPCR class in these organisms is the Pth11-related, with members similar to a protein required for disease in the plant pathogen Magnaporthe oryzae. However, the Pth11-related class has not(More)
  • 1