Jacopo Grilli

Learn More
In the last years, a remarkable theoretical effort has been made in order to understand stability and complexity in ecological communities. The non-random structures of real ecological interaction networks has been recognized as one key ingredient contributing to the coexistence between high complexity and stability in real ecosystems. However most of the(More)
Empirical evidence suggesting that living systems might operate in the vicinity of critical points, at the borderline between order and disorder, has proliferated in recent years, with examples ranging from spontaneous brain activity to flock dynamics. However, a well-founded theory for understanding how and why interacting living systems could dynamically(More)
The simplest theories often have much merit and many limitations, and in this vein, the value of Neutral Theory (NT) has been the subject of much debate over the past 15 years. NT was proposed at the turn of the century by Stephen Hubbell to explain pervasive patterns observed in the organization of ecosystems. Its originally tepid reception among(More)
There has been a considerable effort to understand and quantify the spatial distribution of species across different ecosystems. Relative species abundance (RSA), beta diversity and species-area relationship (SAR) are among the most used macroecological measures to characterize plants communities in forests. In this paper we introduce a simple(More)
The relationships between the core-periphery architecture of the species interaction network and the mechanisms ensuring the stability in mutualistic ecological communities are still unclear. In particular, most studies have focused their attention on asymptotic resilience or persistence, neglecting how perturbations propagate through the system. Here we(More)
The hypothesis that living systems can benefit from operating at the vicinity of critical points has gained momentum in recent years. Criticality may confer an optimal balance between too ordered and exceedingly noisy states. Here we present a model, based on information theory and statistical mechanics, illustrating how and why a community of agents aimed(More)
The role of species interactions in controlling the interplay between the stability of an ecosystem and its biodiversity is still not well understood. The ability of ecological communities to recover after a small perturbation of the species abundances (local asymptotic stability) has been well studied, whereas the likelihood of a community to persist when(More)
Understanding the assembly of ecosystems to estimate the number of species at different spatial scales is a challenging problem. Until now, maximum entropy approaches have lacked the important feature of considering space in an explicit manner. We propose a spatially explicit maximum entropy model suitable to describe spatial patterns such as the species(More)
Living systems are typically characterized by irreversible processes. A condition equivalent to the reversibility is the detailed balance, whose absence is an obstacle for analytically solving ecological models. We revisit a promising model with an elegant field-theoretic analytic solution and show that the theoretical analysis is invalid because of an(More)
Modern ecology has re-emphasized the need for a quantitative understanding of the original 'survival of the fittest theme' based on analyzis of the intricate trade-offs between competing evolutionary strategies that characterize the evolution of life. This is key to the understanding of species coexistence and ecosystem diversity under the omnipresent(More)