Jacopo Grilli

Learn More
The mean size of exponentially dividing Escherichia coli cells in different nutrient conditions is known to depend on the mean growth rate only. However, the joint fluctuations relating cell size, doubling time, and individual growth rate are only starting to be characterized. Recent studies in bacteria reported a universal trend where the spread in both(More)
In the last years, a remarkable theoretical effort has been made in order to understand stability and complexity in ecological communities. The non-random structures of real ecological interaction networks has been recognized as one key ingredient contributing to the coexistence between high complexity and stability in real ecosystems. However most of the(More)
Empirical evidence suggesting that living systems might operate in the vicinity of critical points, at the borderline between order and disorder, has proliferated in recent years, with examples ranging from spontaneous brain activity to flock dynamics. However, a well-founded theory for understanding how and why interacting living systems could dynamically(More)
The simplest theories often have much merit and many limitations, and in this vein, the value of Neutral Theory (NT) has been the subject of much debate over the past 15 years. NT was proposed at the turn of the century by Stephen Hubbell to explain pervasive patterns observed in the organization of ecosystems. Its originally tepid reception among(More)
There has been a considerable effort to understand and quantify the spatial distribution of species across different ecosystems. Relative species abundance (RSA), beta diversity and species-area relationship (SAR) are among the most used macroecological measures to characterize plants communities in forests. In this paper we introduce a simple(More)
The relationships between the core-periphery architecture of the species interaction network and the mechanisms ensuring the stability in mutualistic ecological communities are still unclear. In particular, most studies have focused their attention on asymptotic resilience or persistence, neglecting how perturbations propagate through the system. Here we(More)
The hypothesis that living systems can benefit from operating at the vicinity of critical points has gained momentum in recent years. Criticality may confer an optimal balance between too ordered and exceedingly noisy states. Here we present a model, based on information theory and statistical mechanics, illustrating how and why a community of agents aimed(More)
The role of species interactions in controlling the interplay between the stability of an ecosystem and its biodiversity is still not well understood. The ability of ecological communities to recover after a small perturbation of the species abundances (local asymptotic stability) has been well studied, whereas the likelihood of a community to persist when(More)
T he widespread exchange of genes between bacteria must have consequences on the global architecture of their genomes, which are being found in the abundant genomic data available today. Most of the expansion of bacterial protein families can be attributed to transfer events, which are positively biased for smaller evolutionary distances between genomes,(More)
Prokaryotes vary their protein repertoire mainly through horizontal transfer and gene loss. To elucidate the links between these processes and the cross-species gene-family statistics, we perform a large-scale data analysis of the cross-species variability of gene-family abundance (the number of members of the family found on a given genome). We find that(More)