Jacob Warner

Learn More
Bilateral animals, including humans and most metazoans, are not perfectly symmetrical. Some internal structures are distributed asymmetrically to the right or left side. A conserved Nodal and BMP signaling system directs molecular pathways that impart the sidedness to those asymmetric structures. In the sea urchin embryo, one such asymmetrical structure,(More)
Cnidarians, the extant sister group to bilateria, are well known for their impressive regenerative capacity. The sea anemone Nematostella vectensis is a well-established system for the study of development and evolution that is receiving increased attention for its regenerative capacity. Nematostella is able to regrow missing body parts within five to six(More)
The Hedgehog (Hh) signaling pathway is essential for patterning many structures in vertebrates including the nervous system, chordamesoderm, limb and endodermal organs. In the sea urchin, a basal deuterostome, Hh signaling is shown to participate in organizing the mesoderm. At gastrulation the Hh ligand is expressed by the endoderm downstream of the(More)
Most bilaterians exhibit a left-right asymmetric distribution of their internal organs. The sea urchin larva is notable in this regard since most adult structures are generated from left sided embryonic structures. The gene regulatory network governing this larval asymmetry is still a work in progress but involves several conserved signaling pathways(More)
A relatively small number of signaling pathways govern the early patterning processes of metazoan development. The architectural changes over time to these signaling pathways offer unique insights into their evolution. In the case of Hedgehog (Hh) signaling, two very divergent mechanisms of pathway transduction have evolved. In vertebrates, signaling relies(More)
The Hedgehog pathway has been shown to be an important developmental signaling pathway in many organisms (Ingham and McMahon. Genes Dev 15:3059-3087, 2001). Recently that work has been extended to developing echinoderm embryos (Walton et al. Dev Biol 331(1):26-37, 2009). Here we describe several methods to perturb the Hedgehog signaling pathway in the sea(More)
  • 1