Learn More
Cyanobacteria, and the viruses (phages) that infect them, are significant contributors to the oceanic 'gene pool'. This pool is dynamic, and the transfer of genetic material between hosts and their phages probably influences the genetic and functional diversity of both. For example, photosynthesis genes of cyanobacterial origin have been found in phages(More)
Eukaryotic genomes are packaged in two basic forms, euchromatin and heterochromatin. We have examined the composition and organization of Drosophila melanogaster heterochromatin in different cell types using ChIP-array analysis of histone modifications and chromosomal proteins. As anticipated, the pericentric heterochromatin and chromosome 4 are on average(More)
Although often considered "minimal" organisms, mycoplasmas show a wide range of diversity with respect to host environment, phenotypic traits, and pathogenicity. Here we report the complete genomic sequence and proteogenomic map for the piscine mycoplasma Mycoplasma mobile, noted for its robust gliding motility. For the first time, proteomic data are used(More)
The mammalian target of rapamycin (mTOR) is a serine/threonine kinase that participates in at least two distinct multiprotein complexes, mTORC1 and mTORC2 . These complexes play important roles in the regulation of cell growth, proliferation, survival, and metabolism. mTORC2 is a hydrophobic motif kinase for the cell-survival protein Akt/PKB and, here, we(More)
The metazoan mitochondrial translation machinery is unusual in having a single tRNA(Met) that fulfills the dual role of the initiator and elongator tRNA(Met). A portion of the Met-tRNA(Met) pool is formylated by mitochondrial methionyl-tRNA formyltransferase (MTFMT) to generate N-formylmethionine-tRNA(Met) (fMet-tRNA(met)), which is used for translation(More)
A single nucleotide substitution in intron 3 of IGF2 in pigs abrogates a binding site for a repressor and leads to a 3-fold up-regulation of IGF2 in skeletal muscle. The mutation has major effects on muscle growth, size of the heart, and fat deposition. Here, we have identified the repressor and find that the protein, named ZBED6, is previously unknown,(More)
Interactions between bacterial hosts and their viruses (phages) lead to reciprocal genome evolution through a dynamic co-evolutionary process. Phage-mediated transfer of host genes--often located in genome islands--has had a major impact on microbial evolution. Furthermore, phage genomes have clearly been shaped by the acquisition of genes from their hosts.(More)
Quantitative proteomics holds considerable promise for elucidation of basic biology and for clinical biomarker discovery. However, it has been difficult to fulfill this promise due to over-reliance on identification-based quantitative methods and problems associated with chromatographic separation reproducibility. Here we describe new algorithms termed(More)
Down syndrome confers a 20-fold increased risk of B cell acute lymphoblastic leukemia (B-ALL), and polysomy 21 is the most frequent somatic aneuploidy among all B-ALLs. Yet the mechanistic links between chromosome 21 triplication and B-ALL remain undefined. Here we show that germline triplication of only 31 genes orthologous to human chromosome 21q22(More)
Mycoplasma mobile glides on surfaces at up to 7 microm/s by an unknown mechanism. We studied the energetics that power gliding by using a novel, growth medium-free system. We found that cells could glide in defined media if the glass substrate is preconditioned by exposure to horse serum. The active component that potentiates gliding is sensitive to(More)