Jacob Alperin-Sheriff

Learn More
We initiate the study of security for key-dependent messages (KDM), sometimes also known as “circular” or “clique” security, in the setting of identity-based encryption (IBE). Circular/KDM security requires that ciphertexts preserve secrecy even when they encrypt messages that may depend on the secret keys, and arises in natural usage scenarios for IBE. We(More)
Gentry’s “bootstrapping” technique (STOC 2009) constructs a fully homomorphic encryption (FHE) scheme from a “somewhat homomorphic” one that is powerful enough to evaluate its own decryption function. To date, it remains the only known way of obtaining unbounded FHE. Unfortunately, bootstrapping is computationally very expensive, despite the great deal of(More)
The Learning with Rounding (LWR) problem was first introduced by Banerjee, Peikert, and Rosen (Eurocrypt 2012) as a derandomized form of the standard Learning with Errors (LWE) problem. The original motivation of LWR was as a building block for constructing efficient, low-depth pseudorandom functions on lattices. It has since been used to construct reusable(More)
We present a lattice-based stateless signature scheme provably secure in the standard model. Our scheme has a constant number of matrices in the public key and a single lattice vector (plus a tag) in the signatures. The best previous lattice-based encryption schemes were the scheme of Ducas and Micciancio (CRYPTO 2014), which required a logarithmic number(More)
The Boyen-Li signature scheme [Asiacrypt’16] is a major theoretical breakthrough. Via a clever homomorphic evaluation of a pseudorandom function over their verification key, they achieve a reduction loss in security linear in the underlying security parameter and entirely independent of the number of message queries made, while still maintaining short(More)
A shared cryptographic key enables strong authentication. Candidate sources for creating such a shared key include biometrics and physically unclonable functions. However, these sources come with a substantial problem: noise in repeated readings. A fuzzy extractor produces a stable key from a noisy source. It consists of two stages. At enrollment time, the(More)