Learn More
A new approach to electrical load forecasting is investigated. The method is based on the semi-parametric spectral estimation method that is used to decompose a signal into a harmonic linear signal model and a non-linear part. A neural network is then used to predict the non-linear part. The final predicted signal is then found by adding the neural network(More)
A new approach to short-term electrical load forecasting is investigated in this paper. As electrical load data are highly non-linear in nature, in the proposed approach, we first separate out the linear and the non-linear parts, and then forecast using the non-linear part only. Semi-parametric spectral estimation method is used to decompose a load data(More)
Since the development of pulse compression in the mid-1950's the concept has become an indispensable feature of modern radar systems. A matched filter is used on reception to maximize the signal to noise ratio of the received signal. The actual waveforms that are transmitted are chosen to have an autocorrelation function with a narrow peak at zero time(More)
Secondary distribution networks generally perform as well as its LV feeders are performing. The main problem that a feeder is experiencing would be the load unbalancing due to the stochastic nature of its individual single-phase loads: larger losses in certain phases accompanied by bad voltage regulation and voltage unbalance. In order to address this(More)