Jacky G Goetz

Learn More
Mechanotransduction is a key determinant of tissue homeostasis and tumor progression. It is driven by intercellular adhesions, cell contractility, and forces generated within the microenvironment and is dependent on extracellular matrix composition, organization, and compliance. We show that caveolin-1 (Cav1) favors cell elongation in three-dimensional(More)
Macromolecular complexes exhibit reduced diffusion in biological membranes; however, the physiological consequences of this characteristic of plasma membrane domain organization remain elusive. We report that competition between the galectin lattice and oligomerized caveolin-1 microdomains for epidermal growth factor (EGF) receptor (EGFR) recruitment(More)
Both tyrosine-phosphorylated caveolin-1 (pY14Cav1) and GlcNAc-transferase V (Mgat5) are linked with focal adhesions (FAs); however, their function in this context is unknown. Here, we show that galectin-3 binding to Mgat5-modified N-glycans functions together with pY14Cav1 to stabilize focal adhesion kinase (FAK) within FAs, and thereby promotes FA(More)
Oncogenic signaling stimulates the dynamic remodeling of actin microfilaments and substrate adhesions, essential for cell spreading and motility. Transformation is associated with increased expression of beta1,6GlcNAc-branched N-glycans, products of Golgi beta1,6-acetylglucosaminyltransferase V (Mgat5) and the favored ligand for galectins. Herein we report(More)
VIDEO ABSTRACT The pattern of blood flow has long been thought to play a significant role in vascular morphogenesis, yet the flow-sensing mechanism that is involved at early embryonic stages, when flow forces are low, remains unclear. It has been proposed that endothelial cells use primary cilia to sense flow, but this has never been tested in vivo. Here we(More)
Rho/ROCK signaling and caveolin-1 (Cav1) are implicated in tumor cell migration and metastasis; however, the underlying molecular mechanisms remain poorly defined. Cav1 was found here to be an independent predictor of decreased survival in breast and rectal cancer and significantly associated with the presence of distant metastasis for colon cancer(More)
Caveolin-1 (Cav1) is a multifunctional scaffolding protein with multiple binding partners that is associated with cell surface caveolae and the regulation of lipid raft domains. Cav1 regulates multiple cancer-associated processes including cellular transformation, tumor growth, cell migration and metastasis, cell death and survival, multidrug resistance and(More)
The 3F3A monoclonal antibody to autocrine motility factor receptor (AMFR) labels mitochondria-associated smooth endoplasmic reticulum (ER) tubules. siRNA down-regulation of AMFR expression reduces mitochondria-associated 3F3A labelling. The 3F3A-labelled ER domain does not overlap with reticulon-labelled ER tubules, the nuclear membrane or perinuclear ER(More)
Anchorage-independent growth (AIG) of cancer cells requires escape from integrin-mediated signals. A protein frequently downregulated in cancer, caveolin-1 (Cav1), mediates integrin control of several growth-regulatory pathways. We report that loss of Cav1 results in faster exit from quiescence and progress through the cell cycle, proliferation without(More)
Intravital microscopy provides dynamic understanding of multiple cell biological processes, but its limited resolution has so far precluded structural analysis. Because it is difficult to capture rare and transient events, only a few attempts have been made to observe specific developmental and pathological processes in animal models using electron(More)