Learn More
PURPOSE To develop a novel dose optimization algorithm for improving the sparing of critical structures during gamma knife radiosurgery by shaping the plug pattern of each individual shot. METHOD AND MATERIALS We first use a geometric information (medial axis) aided guided evolutionary simulated annealing (GESA) optimization algorithm to determine the(More)
Background: This study evaluated the dosimetric impact of various treatment techniques as well as collimator leaf width (2.5 vs 5 mm) for three groups of tumors – spine tumors, brain tumors abutting the brainstem, and liver tumors. These lesions often present challenges in maximizing dose to target volumes without exceeding critical organ tolerance.(More)
Purpose: To build a model that will predict the survival time for patients that were treated with stereotactic radiosurgery for brain metastases using support vector machine (SVM) regression. Methods and Materials: This study utilized data from 481 patients, which were equally divided into training and validation datasets randomly. The SVM model used a(More)
A method for selectively inducing apoptosis in tumor nodules is presented, with close-to-cellular level resolution, using 3D-resolved widefield temporal focusing illumination. Treatment times on the order of seconds were achieved using Verteporfin as the photosensitizer, with doses of 30 μg ml(-1) and below. Results were achieved on both 2D and 3D cell(More)
In presenting this thesis in partial fullllment of the requirements for a Postgraduate degree from the University of Saskatchewan, I agree that the Libraries of this University may make it freely available for inspection. I further agree that permission for copying of this thesis in any manner, in whole or in part, for scholarly purposes may be granted by(More)
BACKGROUND Clinical data indicates that delivery of larger daily doses of radiation may improve the therapeutic ratio for prostate cancer compared to conventional fractionation. A phase II study of stereotactic body radiotherapy with real-time motion management and daily plan re-optimization for low to intermediate risk prostate cancer was undertaken to(More)