Learn More
To date, studies suggest that biological signaling by nitric oxide (NO) is primarily mediated by cGMP, which is synthesized by NO-activated guanylyl cyclases and broken down by cyclic nucleotide phosphodiesterases (PDEs). Effects of cGMP occur through three main groups of cellular targets: cGMP-dependent protein kinases (PKGs), cGMP-gated cation channels,(More)
This review focuses primarily on our current understanding of the structure and function of GAF domains in cyclic nucleotide phosphodiesterases (PDEs). The GAF domain was originally identified by Aravind and Ponting (1997) using the position-specific iterative BLAST method (Altschul et al., 1997). The consensus sequence defining GAF domains is taken from a(More)
Phosphodiesterase-5 (PDE5) inhibitors act by competing with the substrate, cGMP, for the catalytic site of the enzyme. Two commercialized PDE5 inhibitors, sildenafil and vardenafil, are being used to treat erectile dysfunction. These two compounds differ in the heterocyclic ring system used to mimic the purine ring of cGMP. They also differ in the(More)
Background: The Na + /Cl-dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling(More)
BACKGROUND The Na(+)/Cl(-)-dependent serotonin (5-hydroxytryptamine, 5-HT) transporter (SERT) is a critical element in neuronal 5-HT signaling, being responsible for the efficient elimination of 5-HT after release. SERTs are not only targets for exogenous addictive and therapeutic agents but also can be modulated by endogenous, receptor-linked signaling(More)
Receptor desensitization is a ubiquitous regulatory mechanism that defines the activatable pool of receptors, and thus, the ability of cells to respond to environmental stimuli. In recent years, the molecular mechanisms controlling the desensitization of a variety of receptors have been established. However, little is known about the molecular mechanisms(More)
In mouse models of cardiac disease, the type 5 (PDE5)-selective cyclic nucleotide phosphodiesterase inhibitor sildenafil has antihypertrophic and cardioprotective effects attributable to the inhibition of cGMP hydrolysis. To investigate the relevance of these findings to humans, we quantified cGMP-hydrolytic activity and its inhibition by sildenafil in(More)
Atrial natriuretic peptide, acting through its second messenger guanosine 3',5'-cyclic monophosphate (cGMP), suppresses Na+ absorption across the renal inner-medullary collecting duct and increases urinary Na+ excretion. Patch clamp studies show that cGMP reduces Na+ absorption by inhibiting an amiloride-sensitive cation channel in the apical membrane. We(More)
A calmodulin (CaM) binding 'IQ' domain on the L-type Ca(2+) channel (LTCC) C terminus and calmodulin kinase II (CaMK) both signal increases in LTCC opening probability (P(o)) by shifting LTCCs into a gating mode (mode 2) with long openings through a process called facilitation. However, the mechanism whereby CaMK and the IQ domain are targeted to LTCCs is(More)
The side group of an invariant Gln in cGMP- and cAMP-specific phosphodiesterases (PDE) is held in different orientations by bonds with other amino acids and purportedly discriminates between guanine and adenine in cGMP and cAMP. In cGMP-specific PDE5, Gln(775) constrains the orientation of the invariant Gln(817) side chain, which forms bidentate bonds with(More)