Jack van Horssen

Learn More
Major progress has been made during the past three decades in understanding the inflammatory process and pathogenetic mechanisms in multiple sclerosis (MS). Consequently, effective anti-inflammatory and immunomodulatory treatments are now available for patients in the relapsing-remitting stage of the disease. This Review summarizes studies on the pathology(More)
The blood-brain barrier (BBB) is composed of tightly bound endothelial cells (ECs) and perivascular astrocytes that regulate central nervous system (CNS) homeostasis. We showed that astrocytes secrete Sonic hedgehog and that BBB ECs express Hedgehog (Hh) receptors, which together promote BBB formation and integrity during embryonic development and(More)
Cerebral amyloid angiopathy (CAA) is frequently observed in Alzheimer's disease (AD) and is characterized by deposition of amyloid beta (Aβ) in leptomeningeal and cortical brain vasculature. In 40% of AD cases, Aβ mainly accumulates in cortical capillaries, a phenomenon referred to as capillary CAA (capCAA). The aim of this study was to investigate(More)
Macrophages play a dual role in multiple sclerosis (MS) pathology. They can exert neuroprotective and growth promoting effects but also contribute to tissue damage by production of inflammatory mediators. The effector function of macrophages is determined by the way they are activated. Stimulation of monocyte-derived macrophages in vitro with interferon-γ(More)
Reactive oxygen species (ROS) contain one or more unpaired electrons and are formed as intermediates in a variety of normal biochemical reactions. However, when generated in excess amounts or not appropriately controlled, ROS initiate extensive cellular damage and tissue injury. ROS have been implicated in the progression of cancer, cardiovascular disease(More)
Sphingolipids are a class of biologically active lipids that have a role in multiple biological processes including inflammation. Sphingolipids exert their functions by direct signaling or through signaling by their specific receptors. Phosphorylated FTY720 (FTY720P) is a sphingosine 1-phosphate (S1P) analogue that is currently in trial for treatment of(More)
Multiple sclerosis (MS) is an inflammatory demyelinating disease of the central nervous system. Current treatments are very effective in reducing the neuroinflammatory attack, but fail to significantly halt disease progression and associated loss of neuronal tissue. In recent years, it has become increasingly clear that dysfunctional mitochondria are(More)
In brain tissues from multiple sclerosis (MS) patients, clusters of activated HLA-DR-expressing microglia, also referred to as preactive lesions, are located throughout the normal-appearing white matter. The aim of this study was to gain more insight into the frequency, distribution and cellular architecture of preactive lesions using a large cohort of(More)
Reactive oxygen species (ROS) and subsequent oxidative damage may contribute to the formation and persistence of multiple sclerosis (MS) lesions by acting on distinct pathological processes. ROS initiate lesion formation by inducing blood-brain barrier disruption, enhance leukocyte migration and myelin phagocytosis, and contribute to lesion persistence by(More)
Neurodegenerative diseases share various pathological features, such as accumulation of aberrant protein aggregates, microglial activation, and mitochondrial dysfunction. These pathological processes are associated with generation of reactive oxygen species (ROS), which cause oxidative stress and subsequent damage to essential molecules, such as lipids,(More)