Jack Valmadre

Learn More
This paper considers the problem of reconstructing the motion of a 3D articulated tree from 2D point correspondences subject to some temporal prior. Hitherto, smooth motion has been encouraged using a trajectory basis, yielding a hard combinatorial problem with time complexity growing exponentially in the number of frames. Branch and bound strategies have(More)
#1 DSST Staple DAT #20 #50 #90 #100 #1 colour histogram scores HOG #10 #50 Figure 1: Sometimes colour distributions are not enough to discriminate the target from the background. Conversely, template models (like HOG) depend on the spatial configuration of the object and perform poorly when this changes rapidly. Our tracker Staple can rely on the strengths(More)
Reconstructing 3D motion data is highly under-constrained due to several common sources of data loss during measurement, such as projection, occlusion, or miscorrespondence. We present a statistical model of 3D motion data, based on the Kronecker structure of the spa-tiotemporal covariance of natural motion, as a prior on 3D motion. This prior is expressed(More)
The problem of arbitrary object tracking has traditionally been tackled by learning a model of the object's appearance exclusively online, using as sole training data the video itself. Despite the success of these methods, their online-only approach inherently limits the richness of the model they can learn. Recently, several attempts have been made to(More)
Determining dense semantic correspondences across objects and scenes is a difficult problem that underpins many higher-level computer vision algorithms. Unlike canonical dense correspondence problems which consider images that are spatially or temporally adjacent, semantic correspondence is characterized by images that share similar high-level structures(More)
One-shot learning is usually tackled by using generative models or discriminative embeddings. Discriminative methods based on deep learning, which are very effective in other learning scenarios, are ill-suited for one-shot learning as they need large amounts of training data. In this paper, we propose a method to learn the parameters of a deep model in one(More)
Computer vision is increasingly becoming interested in the rapid estimation of object detectors. The canonical strategy of using Hard Negative Mining to train a Support Vector Machine is slow, since the large negative set must be traversed at least once per detector. Recent work has demonstrated that, with an assumption of signal stationarity, Linear(More)