Learn More
Genetic analysis of growth cone guidance choice points in Drosophila identified neuronal receptor protein tyrosine phosphatases (RPTPs) as key determinants of axon pathfinding behavior. We now demonstrate that the Drosophila Abl tyrosine kinase functions in the intersegmental nerve b (ISNb) motor choice point pathway as an antagonist of the RPTP Dlar. The(More)
Position effects can complicate transgene analyses. This is especially true when comparing transgenes that have inserted randomly into different genomic positions and are therefore subject to varying position effects. Here, we introduce a method for the precise targeting of transgenic constructs to predetermined genomic sites in Drosophila using the C31(More)
Recent analysis of Rho subfamily GTPases in Drosophila revealed roles for Rac and Cdc42 during axonogenesis. Here, we describe the identification and characterization of the Drosophila counterpart of Trio, a guanine nucleotide exchange factor (GEF) that associates with the receptor phosphatase LAR and regulates GTPase activation in vertebrate cells. Mutants(More)
BACKGROUND Regulation of actin structures is instrumental in maintaining proper cytoarchitecture in many tissues. In the follicular epithelium of Drosophila ovaries, a system of actin filaments is coordinated across the basal surface of cells encircling the oocyte. These filaments have been postulated to regulate oocyte elongation; however, the molecular(More)
Axon guidance requires the integration of diverse guidance signals presented by numerous extracellular cues and cell-cell interactions. The molecular mechanisms that interpret these signals involve networks of intracellular signaling proteins that coordinate a variety of responses to the environment, including remodeling and assembly of the actin(More)
Homolog pairing refers to the alignment and physical apposition of homologous chromosomal segments. Although commonly observed during meiosis, homolog pairing also occurs in nonmeiotic cells of several organisms, including humans and Drosophila. The mechanism underlying nonmeiotic pairing, however, remains largely unknown. Here, we explore the use of(More)
Studies from diverse systems have shown that distinct interchromosomal interactions are a central component of nuclear organization. In some cases, these interactions allow an enhancer to act in trans, modulating the expression of a gene encoded on a separate chromosome held in close proximity. Despite recent advances in uncovering such phenomena, our(More)
Studies from diverse organisms show that distinct interchromosomal interactions are associated with many developmental events. Despite recent advances in uncovering such phenomena, our understanding of how interchromosomal interactions are initiated and regulated is incomplete. During the maternal-to-zygotic transition (MZT) of Drosophila embryogenesis,(More)
In Drosophila and other Dipterans, homologous chromosomes are in close contact in virtually all nuclei, a phenomenon known as somatic homolog pairing. Although homolog pairing has been recognized for over a century, relatively little is known about its regulation. We performed a genome-wide RNAi-based screen that monitored the X-specific localization of the(More)
In Drosophila melanogaster, widely used mitotic recombination-based strategies generate mosaic flies with positive readout for only one daughter cell after division. To differentially label both daughter cells, we developed the twin spot generator (TSG) technique, which through mitotic recombination generates green and red twin spots that are detectable(More)