Learn More
Cell lineage studies of the rat cerebral cortex suggest that by midneurogenesis, most precursor cells of the ventricular zone are specified to produce a single cell type. Yet there is also evidence for multipotential precursor cells. We used a retroviral vector to follow the developmental potential of cortical precursor cells by labeling cortical cells in(More)
  • Hsuan-Hwai Lin, Esther Bell, Dafe Uwanogho, Leo W Perfect, Harun Noristani, Thomas J D Bates +3 others
  • 2010
Neural induction is the first step in the formation of the vertebrate central nervous system. The emerging consensus of the mechanisms underlying neural induction is the combined influences from inhibiting bone morphogenetic protein (BMP) signaling and activating fibroblast growth factor (FGF)/Erk signaling, which act extrinsically via either autocrine or(More)
The ability to track stem cell transplants in the brain by in vivo neuroimaging will undoubtedly aid our understanding of how these cells mediate functional recovery after neural transplantation. One major challenge for the development and refinement of stem cell transplantation is to map the spatial distribution and rate of migration in situ. Here we(More)
Preferential migration of stem cells toward the site of a lesion is a highly desirable property of stem cells that allows flexibility in the site of graft implantation in the damaged brain. In rats with unilateral stroke damage, neural stem cells transplanted into the contralateral hemisphere migrate across to the lesioned hemisphere and populate the area(More)
In humans, neurotrauma is suspected to cause brain atrophy and accelerate slowly progressive neurodegenerative disorders, such as Alzheimer's disease or schizophrenia. However, a direct link between brain injury and subsequent delayed global neurodegeneration has remained elusive. Here we show that juvenile (4-week-old) mice that are given a discrete(More)
Stress and glucocorticoid hormones regulate hippocampal neurogenesis, but the molecular mechanisms underlying their effects are unknown. We, therefore, investigated the molecular signaling pathways mediating the effects of cortisol on proliferation, neuronal differentiation, and astrogliogenesis, in an immortalized human hippocampal progenitor cell line. In(More)
  • Magdalena Götz, Andrea Wizenmann, Sigrid Reinhardt, Andrew Lumsden, Jack Price
  • 1996
We asked whether specifications of different regions of the rodent and avian telencephalon during development involved the acquisition of differential adhesive properties. Cells from different regions were aggregated in a short-term aggregation assay, and their segregation was analyzed. Both neurons and precursor cells from cortex segregate from striatal(More)
A growing number of studies have highlighted the potential of stem cell and more-differentiated neural cell transplantation as intriguing therapeutic approaches for neural repair after spinal cord injury (SCI). A conditionally immortalized neural stem cell line derived from human fetal spinal cord tissue (SPC-01) was used to treat a balloon-induced SCI.(More)
  • Zahra Hassani, Joanna O'Reilly, Yewande Pearse, Paul Stroemer, Ellen Tang, John Sinden +2 others
  • 2012
MAIN OBJECTIVES Stem cell transplantation is to date one of the most promising therapies for chronic ischemic stroke. The human conditionally immortalised neural stem cell line, CTX0E03, has demonstrable efficacy in a rodent model of stroke and is currently in clinical trials. Nonetheless, the mechanisms by which it promotes brain repair are not fully(More)
Until now, models of psychiatric diseases have typically been animal models. Whether they were to be used to further understand the pathophysiology of the disorder, or as drug discovery tools, animal models have been the choice of preference in mimicking psychiatric disorders in an experimental setting. While there have been cellular models, they have(More)