Learn More
Secretion stimulates ductular bile secretion by binding to receptors on intrahepatic bile duct epithelial cells (i.e., cholangiocytes). In the rat, this choleretic effect increases after bile duct ligation (BDL). Although cholangiocyte proliferation induced by BDL contributes to secretin-induced hypercholeresis, the mechanisms modulating these alterations(More)
MicA is a small non-coding RNA that regulates ompA mRNA translation in Escherichia coli. MicA has an inhibitory function, base pairing to the translation initiation region of target mRNAs through short sequences of complementarity, blocking their ribosome-binding sites. The MicA structure contains two stem loops, which impede its interaction with target(More)
The expression of secretory component (SC), the epithelial receptor for polymeric Ig, was enhanced by the addition of human rIFN-gamma or rIL-4, as revealed by the binding of radiolabeled polymeric, J chain-containing IgA or anti-SC antisera to the human colonic adenocarcinoma epithelial cell line HT-29. In combination, these cytokines exhibited a(More)
The development of new and refined separation techniques--including FACS, FFE, CFE and isopyknic gradients--has had a profound impact on the ability of investigators to isolate specific cell types from the liver. Although some of these techniques, such as FFE, may be of limited preparative value, they are nonetheless important analytical tools that detect(More)
Cholangiocytes, the epithelial cells that line intrahepatic bile ducts, participate in bile secretion via basal and agonist-stimulated transport of solutes and water. On the basis of subtle structural differences between cholangiocytes lining small vs. large bile ducts, as well as known phenotypic variations among transporting epithelia in other organs, we(More)
Radioiodinated human secretory IgA (sIgA) injected intravenously into mice was rapidly cleared from the circulation by the liver. A portion of the sIgA was transported as an intact molecule into the bile. However, this transport was less efficient than that of human serum polymeric IgA (pIgA). The clearance of sIgA from the circulation was inhibited by(More)
Cholangiocarcinoma represents a challenging primary malignancy of the liver with no effective medical therapy and a poor prognosis. We have investigated the role of tamoxifen and estrogen receptors (ERs) in the regulation of growth of human cholangiocarcinoma. Two human cholangiocarcinoma cell lines, OZ and SK-ChA-1, were grown in the presence of graded(More)
OxyS and RprA are two small noncoding RNAs (sRNAs) that modulate the expression of rpoS, encoding an alternative sigma factor that activates transcription of multiple Escherichia coli stress-response genes. While RprA activates rpoS for translation, OxyS down-regulates the transcript. Crucially, the RNA binding protein Hfq is required for both sRNAs to(More)
We have previously demonstrated that tamoxifen inhibits the growth of human cholangiocarcinoma cells in culture and inhibits tumor growth when cells are injected into nude mice. However, the mechanism of action of tamoxifen remains unknown. Here we demonstrate that tamoxifen and trifluoperazine, both potent calmodulin antagonists, induce apoptosis in vitro,(More)