Learn More
Although there are many algorithms available in the literature aimed at segmentation and model reconstruction of 3D angiographic images, many are focused on characterizing only a part of the vascular network. This study is motivated by the recent emerging prospects of whole-organ simulations in coronary hemodynamics, autoregulation and tissue oxygen(More)
Parameter estimation from non-invasive measurements is a crucial step in patient-specific cardiac modeling. It also has the potential to provide significant assistance in the clinical diagnosis of cardiac diseases through the quantification of myocardial material heterogeneity. In this paper, we formulate a novel Reduced-order Unscented Kalman Filter (rUKF)(More)
Diabetic retinopathy is a major cause of blindness. Proliferative diabetic retinopathy is a result of severe vascular complication and is visible as neovascularization of the retina. Automatic detection of such new vessels would be useful for the severity grading of diabetic retinopathy, and it is an important part of screening process to identify those who(More)
Cubic Hermite meshes provide an efficient representation of anatomy, and are useful for simulating soft tissue mechanics. However, their personalization can be a complex, time consuming and labour-intensive process. This paper presents a method based on image registration and using an existing template for deriving a patient-specific cubic Hermite mesh. Its(More)
We present a method to efficiently simulate coronary perfusion in subject-specific models of the heart within clinically relevant time frames. Perfusion is modelled as a Darcy porous-media flow, where the permeability tensor is derived from homogenization of an explicit anatomical representation of the vasculature. To account for the disparity in length(More)
Experimental data and advanced imaging techniques are increasingly enabling the extraction of detailed vascular anatomy from biological tissues. Incorporation of anatomical data within perfusion models is non-trivial, due to heterogeneous vessel density and disparate radii scales. Furthermore, previous idealised networks have assumed a spatially repeating(More)
Keywords: Vascular structure Mechanics Haemodynamics Mass transport Regulation Adaptation Mathematical and computational model Multi-scale Cellular mechanics Integration a b s t r a c t A key aim of the cardiac Physiome Project is to develop theoretical models to simulate the functional behaviour of the heart under physiological and pathophysiological(More)
E-selectin plays a critical role in mediating tissue-specific homing of T cells into skin, and of primitive hematopoietic progenitor cells (HPCs) into bone marrow (BM). Though it is known that a glycoform of PSGL-1 (CLA) functions as the principal E-selectin ligand on human T lymphocytes, the E-selectin ligand(s) of human HPCs has not been identified. We(More)
There is a need for, and utility in, the acquisition of data sets of cardiac histoanatomy, with the vision of reconstructing individual hearts on the basis of noninvasive imaging, such as MRI, enriched by reference to detailed atlases of serial histology obtained from representative samples. These data sets would be useful not only as a repository of(More)