Learn More
Parasitoids display remarkable inter- and intraspecific variation in their reproductive and associated traits. Adaptive explanations have been proposed for many of the between-trait relationships. We present an overview of the current knowledge of parasitoid reproductive biology, focusing on egg production strategies in females, by placing parasitoid(More)
Correlated evolution of mate signals and mate preference may be constrained if selection pressures acting on mate preference differ from those acting on mate signals. In particular, opposing selection pressures may act on mate preference and signals when traits have sexual as well as nonsexual functions. In the butterfly Colias philodice eriphyle, divergent(More)
We investigated the genetic background of intraspecific variation in wing color across an elevational gradient in the butterfly Colias philodice eriphyle. The degree of wing melanization was an accelerating function of elevation, and differences in wing melanization persisted in a common environment. Full-sibling analysis and parent-offspring regression(More)
Loss of traits can dramatically alter the fate of species. Evidence is rapidly accumulating that the prevalence of trait loss is grossly underestimated. New findings demonstrate that traits can be lost without affecting the external phenotype, provided the lost function is compensated for by species interactions. This is important because trait loss can(More)
Variation in the degree of insect wing melanin affects thermoregulation, and is expected to be adapted to local environmental conditions, for example over an elevational gradient. The effects of melanization on flight activity and egg maturation rate were assessed in the closely related butterflies Colias philodice eriphyle and C. eurytheme using(More)
The phenotypic plasticity of traits, defined as the ability of a genotype to express different phenotypic values of the trait across a range of environments, can vary between habitats depending on levels of temporal and spatial heterogeneity. Other traits can be insensitive to environmental perturbations and show environmental canalization. We tested levels(More)
BACKGROUND Genomic studies measuring transcriptional responses to changing environments and stress currently make their way into the field of evolutionary ecology and ecotoxicology. To investigate a small to medium number of genes or to confirm large scale microarray studies, Quantitative Reverse Transcriptase PCR (QRT-PCR) can achieve high accuracy of(More)
Species belonging to the same guild (i.e. sharing the same resources) can reduce the negative effects of resource competition through niche partitioning. Coexisting species may differ in their resource exploitation and in the associated allocation of nutrients, depending on their resource niche. Trade-offs in nutrient allocation, such as between(More)
Mating partners often have conflicting interests when copulating. One of the major agents affecting female mating partners is seminal fluid, transferred along with sperm. The role of seminal fluid proteins (SFPs) in reproductive success is well studied in separate-sexed animals but is much less so in simultaneous hermaphrodites. The latter potentially have(More)
BACKGROUND Sexual conflicts between mating partners can strongly impact the evolutionary trajectories of species. This impact is determined by the balance between the costs and benefits of mating. However, due to sex-specific costs it is unclear how costs compare between males and females. Simultaneous hermaphrodites offer a unique opportunity to determine(More)