Jacek Szklarski

Learn More
A recent Letter [R. Hollerbach and G. Rüdiger, Phys. Rev. Lett. 95, 124501 (2005)] has shown that the threshold for the onset of the magnetorotational instability in a Taylor-Couette flow is dramatically reduced if both axial and azimuthal magnetic fields are imposed. In agreement with this prediction, we present results of a Taylor-Couette experiment with(More)
The magnetorotational instability (MRI) is thought to play a key role in the formation of stars and black holes by sustaining the turbulence in hydrodynamically stable Keplerian accretion disks. In previous experiments the MRI was observed in a liquid metal Taylor-Couette flow at moderate Reynolds numbers by applying a helical magnetic field. The(More)
The magnetorotational instability (MRI) plays a key role in the formation of stars and black holes, by enabling outward angular momentum transport in accretion discs. The use of combined axial and azimuthal magnetic fields allows the investigation of this effect in liquid metal flows at moderate Reynolds and Hartmann numbers. A variety of experimental(More)
In the article we describe a system which allows a mobile robot equipped with a 3D laser range nder to navigate in indoor and outdoor environment. A global map of the environment is constructed, the particle lter algorithm is used in order to accurately determine the position of the robot. Based only on data from the laser, the robot is able to recognize(More)
The magnetorotational instability (MRI) plays an essential role in the formation of stars and black holes. By destabilizing hydrodynamically stable Keplerian flows, the MRI triggers turbulence and enables outward transport of angular momentum in accretion discs. We present the results of a liquid metal Taylor-Couette experiment under the influence of(More)
  • 1