Jacek Switala

Learn More
Nutrient limitation is a critical signal in Salmonella virulence gene regulation. The katF (rpoS) gene mediates the expression of the Salmonella spv plasmid virulence genes during bacterial starvation. A katF Salmonella mutant has increased susceptibility to nutrient deprivation, oxidative stress, acid stress, and DNA damage, conditions which are relevant(More)
Catalases from 16 different organisms including representatives from all three phylogenetic clades were purified and characterized to provide a comparative picture of their respective properties. Collectively the enzymes presented a diverse range of activities and properties. Specific activities ranged from 20,700 to 273,800 units per milligram of protein(More)
Vegetative cells of Bacillus subtilis in logarithmic growth phase produced one catalase, labeled catalase 1, with a nondenatured molecular weight of 205,000. As growth progressed, other activity bands with slower electrophoretic mobilities on polyacrylamide gels appeared, including a series of bands with a common nondenatured molecular weight of 261,000,(More)
Three strains of Escherichia coli differing only in the catalase locus mutated by transposon Tn10 were constructed. These strains produced only catalase HPI (katE::Tn10 and katF::Tn10 strains) or catalase HPII (katG::Tn10). HPI levels increased gradually about twofold during logarithmic growth but did not increase during growth into stationary phase in rich(More)
Catalase (hydroperoxidase II or HPII) of Escherichia coli K12 has been purified using a protocol that also allows the purification of the second catalase HPI in large amounts. The purified HPII was found to have equal amounts of two subunits with molecular weights of 90,000 and 92,000. Only a single 92,000 subunit was present in the immunoprecipitate(More)
BACKGROUND Catalase is a ubiquitous enzyme present in both the prokaryotic and eukaryotic cells of aerobic organisms. It serves, in part, to protect the cell from the toxic effects of small peroxides. Escherichia coli produces two catalases, HPI and HPII, that are quite distinct from other catalases in physical structure and catalytic properties. HPII,(More)
1. NADPH binds to bovine catalase and to yeast catalases A and T, but not to Escherichia coli catalase HPII. The association was demonstrated using chromatography and fluorimetry. Bound NADPH fluoresces in a similar way to NADPH in solution. 2. Bound NADPH protects bovine and yeast catalases against forming inactive peroxide compound II either via(More)
Pathogenic microorganisms possess antioxidant defense mechanisms for protection from reactive oxygen metabolites such as hydrogen peroxide (H2O2), which are generated during the respiratory burst of phagocytic cells. These defense mechanisms include enzymes such as catalase, which detoxify reactive oxygen species, and DNA repair systems which repair damage(More)
Fusion plasmids with lacZ under the control of the katE (encoding catalase or hydroperoxidase HPII) and katF (encoding a sigma factor-like protein required for katE expression) promoters were constructed. Expression from both katE and katF promoters was low in rich medium but elevated in poor medium during log-phase growth. Furthermore, the slowdown in(More)
The catalase-peroxidase encoded by katG of Burkholderia pseudomallei (BpKatG) is 65% identical with KatG of Mycobacterium tuberculosis, the enzyme responsible for the activation of isoniazid as an antibiotic. The structure of a complex of BpKatG with an unidentified ligand, has been solved and refined at 1.7A resolution using X-ray synchrotron data(More)