Learn More
Impedance modulation has been suggested as a means to suppress the effects of internal 'noise' on movement kinematics. We investigated this hypothesis in a neuro-musculo-skeletal model. A prerequisite is that the muscle model produces realistic force variability. We found that standard Hill-type models do not predict realistic force variability in response(More)
Job rotation is often advocated to reduce workload, but its efficacy has seldom been investigated. The aim of this study is to compare the work demands, workload, and recovery among truck driving, refuse collecting, and rotating between these two jobs, between days and during the day. Three teams of 3 employees each participated in this study. Work demands(More)
Laboratory study using a repeated measures design. The aim of this study was to determine if ankle proprioception is targeted in exercises on unstable surfaces. Lateral ankle sprain (LAS) has recurrence rates over 70%, which are believed to be due to a reduced accuracy of proprioceptive signals from the ankle. Proprioceptive exercises in rehabilitation of(More)
In 2 experiments, participants haptically estimated length and heaviness of handheld rods while wielding without seeing them. The sets of rods had been constructed such that variation of static moment and the 1st eigenvalue of the inertia tensor (I 1) were separated. Consistent with previous findings, perceived rod length correlated strongly with I 1.(More)
The accuracy of predictions of muscle force based on electromyography (EMG) is an important issue in biomechanics and kinesiology. Since human skeletal muscles show a high diversity and heterogeneity in their fiber architecture, it is difficult to properly align electrodes to the muscle fiber direction. Against this background, we analyzed the effect of(More)
In the first part of lifting movements, the trunk movement is surprisingly resistant to perturbations. This study examined which factors contribute to this perturbation resistance of the trunk during lifting. Three possible mechanisms were studied: force-length-velocity characteristics of muscles, the momentum of the trunk as well as the effect of passive(More)
Tripping over obstacles is one of the main causes of falls. One potential hazard to actually fall when tripped is inadequate foot landing. Adequate landing is required to control the body’s angular momentum, while avoiding dangerous surfaces (slippery patch, uneven ground). To avoid such dangers, foot trajectory needs to be controlled by inhibiting and(More)
Associate Editor Catherine Disselhorst-Klug oversaw the review of this article. In a recent study, Cignetti et al. 2 compared the use of Rosenstein's, 5 and Wolf's 7 algorithms to evaluate dynamic stability of gait. Properly assessing stability of gait may be of great benefit but is fraught with difficulties , especially when using short datasets, rendering(More)
Accurate force prediction from surface electromyography (EMG) forms an important methodological challenge in biomechanics and kinesiology. In a previous study (Staudenmann et al., 2006), we illustrated force estimates based on analyses lent from multivariate statistics. In particular, we showed the advantages of principal component analysis (PCA) on(More)
The assessment of short episodes of gait is clinically relevant and easily implemented, especially given limited space and time requirements. BFS (body-fixed-sensors) are small, lightweight and easy to wear sensors, which allow the assessment of gait at relative low cost and with low interference. Thus, the assessment with BFS of short episodes of gait,(More)