• Publications
  • Influence
Habitable zones around main sequence stars.
TLDR
The results suggest that mid-to-early K stars should be considered along with G stars as optimal candidates in the search for extraterrestrial life. Expand
Habitable Zones Around Main-Sequence Stars: New Estimates
Identifying terrestrial planets in the habitable zones (HZs) of other stars is one of the primary goals of ongoing radial velocity (RV) and transit exoplanet surveys and proposed future spaceExpand
A negative feedback mechanism for the long‐term stabilization of Earth's surface temperature
We suggest that the partial pressure of carbon dioxide in the atmosphere is buffered, over geological time scales, by a negative feedback mechanism in which the rate of weathering of silicateExpand
Mass-independent fractionation of sulfur isotopes in Archean sediments: strong evidence for an anoxic Archean atmosphere.
TLDR
It is concluded that the atmospheric O2 concentration must have been < 10(-5) PAL prior to 2.3 Ga, which would have meant that all sulfur-bearing species would have passed through the oceanic sulfate reservoir before being incorporated into sediments, so any signature of MIF would have been lost. Expand
Habitable planets around the star Gliese 581
Radial velocity surveys are now able to detect terrestrial planets at habitable distance from M-type stars. Recently, two planets with minimum masses below 10 Earth masses were reported in a tripleExpand
HABITABLE ZONES AROUND MAIN-SEQUENCE STARS: DEPENDENCE ON PLANETARY MASS
The ongoing discoveries of extra-solar planets are unveiling a wide range of terrestrial mass (size) planets around their host stars. In this Letter, we present estimates of habitable zones (HZs)Expand
Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus.
TLDR
A one-dimensional climate model is used to study the response of an Earth-like atmosphere to large increases in solar flux, and the critical solar flux at which a runaway greenhouse occurs, that is, the oceans evaporate entirely, is found to be 1.4 times the present flux at Earth's orbit. Expand
Greenhouse warming by CH4 in the atmosphere of early Earth.
TLDR
It is found that a CH4 mixing ratio of 10(-4) (100 ppmv) or more in Earth's early atmosphere would provide agreement with the paleosol data from 2.3-2.4 Ga, which could have triggered the Earth's first widespread glaciation. Expand
Earth's early atmosphere
  • J. Kasting
  • Chemistry, Medicine
  • Science
  • 23 January 1987
TLDR
A better understanding of past atmospheric evolution is important to understanding the evolution of life and to predicting whether Earth-like planets might exist elsewhere in the galaxy. Expand
A revised, hazy methane greenhouse for the Archean Earth.
Geological and biological evidence suggests that Earth was warm during most of its early history, despite the fainter young Sun. Upper bounds on the atmospheric CO2 concentration in the LateExpand
...
1
2
3
4
5
...