Author pages are created from data sourced from our academic publisher partnerships and public sources.
- Publications
- Influence
Algebraic Criteria for Entanglement in Multipartite Systems
- J. D. M. Vianna, M. Trindade, M. Fernandes
- Mathematics
- 1 April 2008
Abstract
Quantum computing depends heavily on quantum entanglement. It has been known that geometric models for correlated two-state quantum systems (qubits) can be developed using geometric algebra.… Expand
The fitting of potential energy and transition moment functions using neural networks: transition probabilities in OH (A2Σ+→X2Π)
- Ana Carla P Bittencourt, F. Prudente, J. D. M. Vianna, J. D. M. Vianna
- Chemistry
- 16 February 2004
Abstract We have studied the performance of the back-propagation neural network with different architectures and activation functions to fit potential energy curves and dipolar transition moment… Expand
On the Generalized Phase Space Approach to Duffin-Kemmer-Petiau Particles
- M. Fernandes, J. D. M. Vianna
- Mathematics
- 1 February 1999
We present a general derivation of the Duffin-Kemmer-Petiau (D.K.P) equation on the relativistic phase space proposed by Bohm and Hiley. We consider geometric algebras and the idea of algebraic… Expand
Sobre os Estados Emaranhados
- Eric Pinto, S. Floquet, M. G. R. Martins, J. D. M. Vianna
- Philosophy
- 13 March 2015
O emaranhamento quântico esta na base de muitos estudos em computacao e informacao quânticas. Nesta comunicacao apresentamos alguns dados e conceitos relativos a este campo de pesquisa. Exemplos de… Expand
Quantum mechanics on phase space: The hydrogen atom and its Wigner functions
- P. Campos, M. Martins, M. Fernandes, J. D. M. Vianna, J. D. M. Vianna
- Physics
- 1 March 2018
Abstract Symplectic quantum mechanics (SQM) considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space H Γ , to construct a unitary representation for the… Expand
Galilean Duffin–Kemmer–Petiau algebra and symplectic structure
- M. Fernandes, A. Santana, J. D. M. Vianna, J. D. M. Vianna
- Physics
- 19 March 2003
We develop the Duffin–Kemmer–Petiau (DKP) approach in the phase-space picture of quantum mechanics by considering DKP algebras in a Galilean covariant context. Specifically, we develop an algebraic… Expand
Galilean-Covariant Clifford Algebras in the Phase-Space Representation
- J. D. M. Vianna, M. Fernandes, A. Santana
- Mathematics
- 2005
We apply the Galilean covariant formulation of quantum dynamics to derive the phase-space representation of the Pauli–Schrödinger equation for the density matrix of spin-1/2 particles in the presence… Expand
Non-extensive statistical entropy, quantum groups and quantum entanglement
- M. Trindade, J. D. M. Vianna, J. D. M. Vianna
- Physics
- 15 June 2012
In this work, we explore a new connection between quantum groups and Tsallis entropy through the energy spectrum of a Hamiltonian with SUq(2) symmetry. Identifying the deformation parameter of the… Expand
Supersymmetric symplectic quantum mechanics
- Miralvo B. de Menezes, M. Fernandes, M. Martins, A. Santana, J. D. M. Vianna, J. D. M. Vianna
- Physics
- 1 February 2018
Abstract Symplectic Quantum Mechanics SQM considers a non-commutative algebra of functions on a phase space Γ and an associated Hilbert space H Γ to construct a unitary representation for the Galilei… Expand
C*-Álgebras e a Descrição da Mecânica Quântica
- S. Floquet, A. A. D. C. Júnior, M. A. S. Trindade, J. D. M. Vianna, J. D. M. Vianna
- 22 January 2018
1Campus Juazeiro, Universidade Federal do Vale do São Francisco, Juazeiro, BA, Brasil 2Instituto de Matemática, Universidade Federal da Bahia, Salvador, BA, Brasil 3Departamento de Ciências Exatas e… Expand