J Ye

Learn More
Intrinsic to the process of high-order harmonic generation is the creation of plasma and the resulting spatiotemporal distortions of the driving laser pulse. Inside a high-finesse cavity where the driver pulse and gas medium are reused, this can lead to optical bistability of the cavity-plasma system, accumulated self-phase modulation of the intracavity(More)
The particle sizing capabilities of light scattering spectroscopy (LSS) and the spatial localization of optical coherence tomography (OCT) are brought together in a new modality known as scattering-mode spectroscopic OCT. An analysis is presented of the spectral dependence of the light collected in spectroscopic OCT for samples comprised of spherical(More)
We demonstrate a frequency comb (FC) swept laser and a frequency comb Fourier domain mode locked (FC-FDML) laser for applications in optical coherence tomography (OCT). The fiber-based FC swept lasers operate at a sweep rate of 1kHz and 120kHz, respectively over a 135nm tuning range centered at 1310nm with average output powers of 50mW. A 25GHz free(More)
We address technical impediments to the generation of high-photon flux XUV frequency combs through cavity-enhanced high harmonic generation. These difficulties arise from mirror damage, cavity nonlinearity, the intracavity plasma generated during the HHG process, and imperfect phase-matching. By eliminating or minimizing each of these effects we have(More)
We propose the use of an intra-cavity Mach Zehnder interfer-ometer (MZI), for increasing the repetition rate at which carrier-envelope phase-locked pulses are generated in passively mode-locked fiber lasers. The attractive feature of the proposed scheme is that light escaping through the open output ports of the MZI can be used as a monitor signal feeding a(More)
We present full phase stabilization of an amplified Yb:fiber femtosecond frequency comb using an intracavity electro-optic modulator and an acousto-optic modulator. These transducers provide high servo bandwidths of 580 kHz and 250 kHz for f(rep) and f(ceo), producing a robust and low phase noise fiber frequency comb. The comb was self-referenced with an(More)
We report a simple technique to suppress high-frequency phase noise of a Yb-based fiber optical frequency comb using an active intensity noise servo. Out-of-loop measurements of the phase noise using an optical heterodyne beat with a cw laser show suppression of phase noise by ≥7 dB out to Fourier frequencies of 100 kHz with a unity-gain crossing of ∼700(More)
Active control and cancellation of residual amplitude modulation (RAM) in phase modulation of an optical carrier is one of the key technologies for achieving the ultimate stability of a laser locked to an ultrastable optical cavity. Furthermore, such techniques are versatile tools in various frequency modulation-based spectroscopy applications. In this(More)
We propose and experimentally demonstrate a method for generating and sharing a secret key using phase fluctuations in fiber optical links. The obtained key can be readily used to support secure communication between the parties. The security of our approach is based on a fundamental asymmetry associated with the optical physical layer: the sophistication(More)
  • 1