J Y Loor

Learn More
Traumatic brain injury can induce the expression of stress-related and neurotrophic genes both within the injury site and in distant regions. These genes may affect severity of damage and/or be neuroprotective. We used in situ hybridization to assess the alterations in expression of the heat shock protein HSP70, nerve growth factor (NGF), and brain-derived(More)
Injuries to the brain acutely disrupt normal metabolic function and may deactivate functional circuits. It is unknown whether these metabolic abnormalities improve over time. We used 2-deoxyglucose (2-DG) autoradiographic image-averaging to assess local cerebral glucose utilization (lCMR(Glc)) of the rat brain 2 mo after moderate (1.7-2.1 atm)(More)
OBJECT Using autoradiographic image averaging, the authors recently described prominent foci of marked glucose metabolism-greater-than-blood-flow uncoupling in the acutely traumatized rat brain. Because hypothermia is known to ameliorate injury in this and other injury models, the authors designed the present study to assess the effects of posttraumatic(More)
OBJECT The authors have recently demonstrated that high-dose human albumin is markedly neuroprotective in experimental traumatic brain injury (TBI) and cerebral ischemia. The pathophysiology of TBI involves acute uncoupling of cerebral glucose utilization and blood flow. The intent of this study was to establish whether the use of human albumin therapy in a(More)
  • 1