Learn More
Ongoing neurogenesis in the adult hippocampal dentate gyrus (DG) generates a substantial population of young neurons. This phenomenon is present in all species examined thus far, including humans. Although the regulation of adult neurogenesis by various physiologically relevant factors such as learning and stress has been documented, the functional(More)
Class I metabotropic glutamate receptors (mGluRs) have been postulated to play a role in synaptic plasticity. To test the involvement of one member of this class, we have recently generated mutant mice that express no mGluR5 but normal levels of other glutamate receptors. The CNS revealed normal development of gross anatomical features. To examine synaptic(More)
Postnatal neurogenesis contributes substantially to the neuronal population of the adult dentate gyrus. We report here that the neurons located in the deep aspects of the granule cell layer, near the proliferative zone, have different properties from those located in the superficial layers. The former group of neurons, tentatively designated as young, can(More)
Adult hippocampal neurogenesis has been linked to learning but details of the relationship between neuronal production and memory formation remain unknown. Using low dose irradiation to inhibit adult hippocampal neurogenesis we show that new neurons aged 4-28 days old at the time of training are required for long-term memory in a spatial version of the(More)
Quantal content of transmission was estimated for three synaptic systems (crayfish and Drosophila neuromuscular junctions, and rat dentate gyrus neurons) with three different methods of measurement: direct counts of released quanta, amplitude measurements of evoked and spontaneous events, and charge measurements of evoked and spontaneous events. At the(More)
Adult animals continue to produce new neurons in the dentate gyrus of hippocampus. Until now, the principal method of studying neurogenesis has been to inject either tritiated thymidine or 5'-Bromo-2-deoxyuridine (BrdU) intraperitoneally followed by autoradiographic or immunohistochemical detection methods respectively. However, such exogenous markers may(More)
The mechanisms underlying the differential expression of long-term potentiation (LTP) by AMPA and NMDA receptors, are unknown, but could involve G-protein-linked metabotropic glutamate receptors. To investigate this hypothesis we created mutant mice that expressed no metabotropic glutamate receptor 5 (mGluR5), but showed normal development. In an earlier(More)
Crustacean motor axons provide a model in which activity-dependent changes in synaptic physiology and synaptic structure can be concurrently observed in single identifiable neurons. In response to a train of stimulation, crustacean neuromuscular junctions undergo pronounced facilitation of transmitter release. The effects of maintained high-frequency(More)
Release of transmitter was evoked at neuromuscular junctions of the crayfish opener muscle by passage of current through an intracellular electrode impaling a branch of the motor axon close to a muscle fiber. Membrane-potential changes in the presynaptic axon branch were monitored, together with postsynaptic potentials. Depolarization of impaled secondary(More)