Learn More
In this paper, we propose new adaptive local refinement (ALR) strategies for first-order system least-squares finite elements in conjunction with algebraic multigrid methods in the context of nested iteration. The goal is to reach a certain error tolerance with the least amount of computational cost and nearly uniform distribution of the error over all(More)
  • Jens Nolting, Carolin Daniel, +8 authors Harald von Boehmer
  • 2009
It has been reported that retinoic acid (RA) enhances regulatory T (T reg) cell conversion by inhibiting the secretion of cytokines that interfere with conversion. This report shows that these conclusions provide a partial explanation at best. First, RA not only interfered with cytokine secretion but also with the ability of these cytokines to inhibit T reg(More)
SUMMARY Algebraic multigrid (AMG) is one of the most efficient and scalable parallel algorithms for solving sparse linear systems on unstructured grids. However, for large 3D problems, the coarse grids that are normally used in AMG often lead to growing complexity in terms of memory use and execution time per AMG V-cycle. Sparser coarse grids, such as those(More)
SUMMARY Two efficiency-based grid refinement strategies are investigated for adaptive finite element solution of partial differential equations. In each refinement step, the elements are ordered in terms of decreasing local error, and the optimal fraction of elements to be refined is determined based on efficiency measures that take both error reduction and(More)
This paper describes the use of an efficiency-based adap-tive mesh refinement scheme, known as ACE, on a 2D reduced model of the incompressible, resistive magnetohydrodynamic (MHD) equations. A first-order system least squares (FOSLS) finite element formulation and algebraic multigrid (AMG) are used in the context of nested iteration. The FOSLS a posteriori(More)
SUMMARY Adaptive local refinement can substantially improve the performance of simulations that involve numerical solution of partial differential equations. In fact, local refinement capabilities are one of the attributes of First-Order System Least Squares (FOSLS) in that it provides an inexpensive but effective a-posteriori local error bound that(More)
Despite considerable progress in recent years, the overall prognosis of metastatic malignant melanoma remains poor, and curative therapeutic options are lacking. Therefore, better understanding of molecular mechanisms underlying melanoma progression and metastasis, as well as identification of novel therapeutic targets that allow inhibition of metastatic(More)
BACKGROUND Pancreatic cancer is one of the most lethal of human malignancies known to date and shows relative insensitivity towards most of the clinically available therapy regimens. 3,5-bis(2-fluorobenzylidene)-4-piperidone (EF24), a novel synthetic curcumin analog, has shown promising in vitro therapeutic efficacy in various human cancer cells, but(More)