Learn More
BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. Nine population-based studies were studied in which BMD and CRFs were(More)
BACKGROUND Although unstable coronary artery disease is the most common reason for admission to a coronary care unit, the long-term prognosis of patients with this diagnosis is unknown. This is particularly true for patients with diabetes mellitus, who are known to have a high morbidity and mortality after an acute myocardial infarction. METHODS AND(More)
Major advances have recently been made in understanding the molecular biology of the archaebacteria. In this review, we compare the structure of protein and stable RNA-encoding genes cloned and sequenced from each of the major classes of archaebacteria: the methanogens, extreme halophiles, and acid thermophiles. Protein-encoding genes, including some(More)
The genetic control of major wheat endosperm proteins by homoeologous group 1 chromosomes has been studied by two-dimensional polyacrylamide gel electrophoresis. The control of at least 15 distinct protein subunits or groups of protein subunits has been allocated to chromosomes 1A, 1B and 1D of Chinese Spring wheat from the analysis of grains of aneuploid(More)
Resveratrol synthase (RS), a key enzyme in biosynthesis of stilbene-type phytoalexins, catalyzes the formation of resveratrol from coumaroyl-CoA and malonyl-CoA. Two cDNA clones, pGSC1 and pGSC2, have been isolated from cDNA libraries established with poly(A)-rich RNA from peanut (Arachis hypogaea) cell cultures specifically induced for RS. These cDNAs were(More)
Bacterial ribonuclease P (RNase P), an endonuclease involved in tRNA maturation, is a ribonucleoprotein containing a catalytic RNA. The secondary structure of this ribozyme is well established, but comparatively little is understood about its 3-D structure. In this analysis, orientation and distance constraints between elements within the Escherichia coli(More)
The catalytic RNA component of bacterial RNase P is responsible for the removal of 5' leader sequences from precursor tRNAs. As part of an on-going phylogenetic comparative characterization of bacterial RNase P, the genes encoding RNase P RNA from the thermophiles Thermotoga maritima, Thermotoga neapolitana, Thermus aquaticus, and a mesophilic relative of(More)
PCR amplification of template DNAs extracted from mixed, naturally occurring microbial populations, using oligonucleotide primers complementary to highly conserved sequences, was used to obtain a large collection of diverse RNase P RNA-encoding genes. An alignment of these sequences was used in a comparative analysis of RNase P RNA secondary and tertiary(More)
The aim of the RNA Ontology Consortium (ROC) is to create an integrated conceptual framework-an RNA Ontology (RO)-with a common, dynamic, controlled, and structured vocabulary to describe and characterize RNA sequences, secondary structures, three-dimensional structures, and dynamics pertaining to RNA function. The RO should produce tools for clear(More)
Although the structure of the catalytic RNA component of ribonuclease P has been well characterized in Bacteria, it has been little studied in other organisms, such as the Archaea. We have determined the sequences encoding RNase P RNA in eight euryarchaeal species: Halococcus morrhuae, Natronobacterium gregoryi, Halobacterium cutirubrum, Halobacteriurn(More)