Learn More
Urban air pollution and smoke from fires have been modeled to reduce cloud formation by absorbing sunlight, thereby cooling the surface and heating the atmosphere. Satellite data over the Amazon region during the biomass burning season showed that scattered cumulus cloud cover was reduced from 38%in clean conditions to 0%for heavy smoke (optical depth of(More)
[1] A cloud masking algorithm based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths was developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance as observed from space, is very different from that of aerosols. Clouds show a very high spatial(More)
Observations of the aerosol optical thickness (AOT) by the MODIS instruments aboard Terra and Aqua satellites are being used extensively for applications to climate and air quality studies, as indicated from 28 publications in 2004 alone. Data quality is essential for these studies. Here we add to the published MODIS validations by investigating the effects(More)
The effect of anthropogenic aerosols on clouds is one of the most important and least understood aspects of human-induced climate change. Small changes in the amount of cloud coverage can produce a climate forcing equivalent in magnitude and opposite in sign to that caused by anthropogenic greenhouse gases, and changes in cloud height can shift the effect(More)
[1] Aerosol absorption of sunlight, in particular by black carbon-soot and dark organic material produced from incomplete combustion of fossil fuel and from vegetation fires, is emerging as a key component of climate forcing. However, global characterization of black carbon emissions, distribution and absorption of sunlight cannot be determined within a(More)
Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized(More)
[1] As a part of the EAST-AIRE study, Nuclepore filters were collected in two size ranges (coarse, 2.5 mm < d < 10 mm, and fine, d < 2.5 mm) from January to May 2005 in Xianghe, about 70 km southeast of Beijing, and analyzed for aerosol mass concentration, spectral absorption efficiency and absorption coefficient. Twelve-hour aerosol mass concentration(More)
NASA developed an Earth Observing System (EOS) to study global change and reduce uncertainties associated with aerosols and other key parameters controlling climate. The first EOS satellite, Terra, was launched in December 1999. The Chesapeake Lighthouse and Aircraft Measurements for Satellites (CLAMS) field campaign was conducted from 10 July to 2 August(More)