Learn More
The time course of the reduction in brain protein synthesis following transient bilateral ischemia in the gerbil was characterized and compared with changes in a number of metabolites related to brain energy metabolism. The recovery of brain protein synthesis was similar following ischemic periods of 5, 10, or 20 min; in vitro incorporation activity of(More)
Hippocampal slices were prepared under three conditions: (1) in medium containing glucose and oxygen at 4 degrees C; (2) as in (1), but at 37 degrees C; (3) in medium devoid of glucose and oxygen at 37 degrees C. The rates of recovery to roughly steady-state levels and through 8 h of incubation were monitored for energy metabolite levels and related(More)
Freeze-dried sections were prepared from retinas of frogs which were dark-adapted or exposed to varying periods of light. Samples of the discrete layers were dissected, weighed, and analyzed for energy metabolites, guanylate compounds, and the enzyme guanylate cyclase. ATP and P-creatine were measured in both dark- and light-adapted retinas. There was a(More)
Glycogen metabolism was studied in primary and Herpesvirus-transformed cultures of neonatal rat brain astrocytes. A small fraction of the glucose consumed was conserved in glycogen in both the primary and the transformed astrocytic cell cultures. After addition of culture medium containing 5.5 mM glucose, glycogen increased to maximal levels within 2.5 h,(More)
Cultured astrocytes, transformed by Herpesvirus, were used as a model system to study several aspects of the control of glycogenolysis. Adrenergic agonists such as norepinephrine and isoproterenol caused an immediate and dose-dependent increase in the intracellular levels of cyclic AMP. Concomitant with the initial phase of cyclic AMP increase, conversion(More)
The delayed death of CA1 neurons in the gerbil has been reported to occur at 4 days of reflow following 5 min of bilateral ischemia. Samples of the CA1 and CA3 somal region of the hippocampus, as well as of the parietal cortex, were dissected from frozen dried sections of gerbil brains frozen in situ between 1.5 and 96 hr of reflow following 5 min of(More)
The transverse guinea pig hippocampal slice preparation was used to model the metabolic changes which occur in vivo during ischemia and recovery. Perfusing brain slices with medium devoid of glucose and oxygen elicits rapid decreases in phosphocreatine, ATP, intracellular pH, and in the evoked field potential recorded in the dentate gyrus. AMP and creatine(More)
Fatigue and recovery from fatigue were related to metabolism in single fibers of the frog semitendinosus muscle. The fibers were held at a sarcomere length of 2.3 microm in oxygenated Ringer solution at 15 degrees C and were stimulated for up to 150 s by a schedule of 10-s, 20-Hz tetanic trains that were interrupted by 1-s rest periods, after which they(More)