Learn More
The modeling, simulation, and experimental verification of several MEMS devices are presented. Simulated results include 3D mode analysis, residual stress effects, thermal expansion, nonlinear deflections, time-varying electrostatic forces, process sensitivities, induced currents, and the transient performance in accelerated reference frames. To simulate(More)
In this paper, we report several advances in the Sugar2.0 MEMS system simulation package, including reduced-order modeling techniques, simple hierarchical description of complex structures, synthesis tools, a variety of models, and a web-based interface. Examples include the modeling of a torsional micromirror with lateral actuators compared to experiment,(More)
Advancements in Sugar include 1) parameterizable netlists, 2) nonlinear frequency response analysis, 3) subnets, 4) improved MNA, 5) reduced order modeling, and 6) a more accurate nonlinear beam model. Examples of these features include the simulation of a two-axis mirror with over 10,000 degrees of freedom, the reduced order modeling applied of an(More)
We propose practical analysis techniques to accurately measure geometric, dynamic, and material properties of MEMS. Analytical methods and test structures are presented to extract over a dozen properties by electric probing in a minimal chip area. Geometric properties include fabrication error with respect to layout geometry such as beam widths, gap(More)
  • 1