J. Ulises Reveles

Learn More
Dopamine forms an initial structure coordinated to the surface of the iron oxide nanoparticle as a result of improved orbital overlap of the five-membered ring and a reduced steric environment of the iron complex. However, through transfer of electrons to the iron cations on the surface and rearrangement of the oxidized dopamine, a semiquinone is formed.(More)
The quantum states in metal clusters are grouped into bunches of close-lying eigenvalues, termed electronic shells, similar to those of atoms. Filling of the electronic shells with paired electrons results in local minima in energy to give stable species called magic clusters. This led to the realization that selected clusters mimic chemical properties of(More)
The use of Hermite Gaussian auxiliary function densities from the variational fitting of the Coulomb potential for the calculation of exchange-correlation potentials is discussed. The basic working equations for the energy and gradient calculation are derived. The accuracy of this approximation for optimized structure parameters and bond energies are(More)
We present the results of photoelectron velocity-map imaging experiments for the photodetachment of small negatively charged Bi(m)Ga(n) (m=1-2, n=0-2), and Pb(n) (n=1-4) clusters at 527 nm. The photoelectron images reveal new features along with their angular distributions in the photoelectron spectra of these clusters. We report the vertical detachment(More)
A synergistic effort combining experiments in beams and first principles theoretical investigations is used to propose mechanisms that could lead to the formation of silicates and nanoparticles with silicon-rich cores through agglomeration of SiO, an abundant oxygen-bearing species in space. The silicon oxygen species involved in the transformation have(More)
We recently demonstrated that, in gas phase clusters containing aluminum and iodine atoms, an Al(13) cluster behaves like a halogen atom, whereas an Al(14) cluster exhibits properties analogous to an alkaline earth atom. These observations, together with our findings that Al(13)(-) is inert like a rare gas atom, have reinforced the idea that chosen clusters(More)
First principles electronic structure calculations have been carried out to investigate the ground state geometry, electronic structure, and the binding energy of [Au(H2O)n]+ clusters containing up to 10 H2O molecules. It is shown that the first coordination shell of Au+ contains two H2O molecules forming a H2O-Au+-H2O structure with C2 symmetry. Subsequent(More)
An experimental and theoretical study of bismuth-doped aluminum clusters in the gas phase has revealed two particularly stable clusters, namely, Al(3)Bi and Al(5)Bi. We show that their electronic structure can be understood in terms of the aromatic and "Jellium" models, respectively. Negative ion photodetachment spectra provide a fingerprint of the(More)
It is shown that the magnetic moments of Sc atoms can be significantly enhanced by combining them with alkali atoms. We present results of first principles electronic structure calculations of ScNa(n) (1 < or = n < or = 12) clusters that indicate that a ScNa(12) cluster consisting of a Sc atom surrounded by 12 Na atoms forming a compact icosahedral(More)
We present the results of photoelectron velocity-map imaging experiments for the photodetachment of small negatively charged ammonia solvated Bi(n) and Pb(n) (n = 1, 2) clusters at 527 nm. The vertical detachment energies of the observed multiple electronic bands and their respective anisotropy parameters for the solvated Bi and Pb anions and clusters(More)