Learn More
[1] Landscapes are sometimes argued to be scale-invariant or random surfaces, yet qualitative observations suggest that they contain characteristic spatial scales. We quantitatively investigate the existence of characteristic landscape scales by analyzing two-dimensional Fourier power spectra derived from high-resolution topographic maps of two landscapes(More)
A suite of observations suggests that the northern plains of Mars, which cover nearly one third of the planet's surface, may once have contained an ocean. Perhaps the most provocative evidence for an ancient ocean is a set of surface features that ring the plains for thousands of kilometres and that have been interpreted as a series of palaeoshorelines of(More)
[1] The geomorphic literature contains many analytic solutions for the topographic evolution of gently sloping soil-mantled hillslopes responding to base level changes. Most of these solutions are limited to vertical base level changes and/or to simplified geometries, however. In this paper we present an analytic solution for the morphology of a valley and(More)
[1] Accumulations of rocky debris at the base of bedrock escarpments on Mars have mean inclinations of $20°, well below the angle of repose ($35°). These inclinations decrease with increasing latitude, suggesting a climatic influence. We present evidence that these low inclinations are the result of gravitational creep driven by repeated deposition and(More)
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. [1] Drainage networks on Titan, Earth, and Mars provide the only known(More)
River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing(More)
The potential hazard and geomorphic significance of shallow landslides depend on their location and size. Commonly applied one-dimensional stability models do not include lateral resistances and cannot predict landslide size. Multidimensional models must be applied to specific geometries, which are not known a priori, and testing all possible geometries is(More)
Bedrock river incision drives the development of much of Earth's surface topography, and thereby shapes the structure of mountain belts and modulates Earth's habitability through its effects on soil erosion, nutrient fluxes and global climate. Although it has long been expected that river incision rates should depend strongly on precipitation rates,(More)