Learn More
We study a noisy drive mechanism for efficiency enhancement of Brownian motors operating on the microscale domain. It was proven [J. Spiechowicz et al., J. Stat. Mech. (2013) P02044] that biased noise η(t) can induce normal and anomalous transport processes similar to those generated by a static force F acting on inertial Brownian particles in a(More)
We study far from equilibrium transport of a periodically driven inertial Brownian particle moving in a periodic potential. As detected for a SQUID ratchet dynamics, the mean square deviation of the particle position from its average may involve three distinct intermediate, although extended diffusive regimes: initially as superdiffusion, followed by(More)
We study transport in an asymmetric superconducting quantum interference device (SQUID) which is composed of a loop with three capacitively and resistively shunted Josephson junctions: two in series in one arm and the remaining one in the other arm. The loop is threaded by an external magnetic flux and the system is subjected to both a time-periodic and a(More)
—We study transport of a harmonically driven iner-tial particle moving in a symmetric periodic potential and subjected to both unbiased Gaussian thermal equilibrium noise and biased non-equilibrium Poissonian shot noise. The dependence of the average velocity on noise parameters exhibits a rich variety of anomalous transport characteristics: We identify an(More)
We study diffusion properties of an inertial Brownian motor moving on a ratchet substrate, i.e., a periodic structure with broken reflection symmetry. The motor is driven by an unbiased time-periodic symmetric force that takes the system out of thermal equilibrium. For selected parameter sets, the system is in a non-chaotic regime in which we can identify a(More)
We study transport properties of two Josephson junctions coupled by an external shunt resistance. One of the junctions (say, the first) is driven by an unbiased ac current consisting of two harmonics. The device can rectify the ac current yielding a dc voltage across the first junction. For some values of coupling strength, controlled by an external shunt(More)
  • 1