Learn More
An enzyme-linked fluorometric assay is described for the continuous monitoring of the unidirectional efflux of glutamate from guinea-pig synaptosomes. Glutamate efflux from freshly suspended, polarized synaptosomes occurs at 0.35-0.39 nmol min-1 mg of protein-1 and is not significantly affected by external Ca2+. KCl depolarization (30 mMKCl) in the absence(More)
We have investigated the role of metabotropic glutamate receptors linked to phosphoinositide hydrolysis in the control of glutamate release in cerebrocortical nerve terminals. The activation of these receptors with the agonist 3,5-dihydroxyphenylglycine enhanced intra-synaptosomal diacylglycerol and facilitated both the depolarization-induced increase in(More)
The role of group-I metabotropic glutamate receptors (mGlu1 and 5) in neurodegeneration is still controversial. While antagonists of these receptors are consistently neuroprotective, agonists have been found to either amplify or attenuate excitotoxic neuronal death. At least three variables affect responses to agonists: (i) the presence of the NR2C subunit(More)
The mechanism by which protein kinase C (PKC) activates transmitter release from guinea pig cerebrocortical synaptosomes was investigated by employing parallel fluorescent assays of glutamate release, cytoplasmic free Ca2+, and plasma membrane potential. 4 beta-Phorbol dibutyrate (4 beta-PDBu) enhances the Ca(2+)-dependent, 4-aminopyridine (4AP)-evoked(More)
We have explored whether the desensitization of metabotropic glutamate receptors (mGluRs) coupled to phosphoinositide hydrolysis affects the role that they play in modulating glutamate release. In hippocampal nerve terminals, the agonist 3,5-dihydroxyphenylglycine (DHPG) facilitated evoked glutamate release, but a second stimulation 5 min later reduced(More)
Metabotropic glutamate receptors (mGluRs) from group III reduce glutamate release. Because these receptors reduce cAMP levels, we explored whether this signaling pathway contributes to release inhibition caused by mGluRs with low affinity for L-2-amino-4-phosphonobutyrate (L-AP4). In biochemical experiments with the population of cerebrocortical nerve(More)
The mechanism of the neuroprotective action of the tetracycline antibiotic minocycline against various neuron insults is controversial. In an attempt to clarify this mechanism, we have studied here its effects on various electrophysiological parameters, Ca(2+) signalling, and glutamate release, in primary cultures of rat hippocampal neurons, and in(More)
We have studied which type/s of Ca2+-channel/s support glutamate exocytosis and its modulation by presynaptic receptors in cerebrocortical nerve terminals. Depolarization of nerve terminals with 30 mM KCl induced a Ca2+-dependent release of 3.64 +/- 0.25 nmol/mg of protein. The addition of either 2 microM omega-conotoxin-GVIA or 200 nM omega-agatoxin-IVA(More)
In nerve terminals, the activation of Ca(2+) channels of either the P/Q or N type triggers glutamate release. In turn, presynaptic metabotropic glutamate receptors control this process through the modulation of these Ca(2+) channels. By measuring glutamate release from cerebrocortical nerve terminals we show that at physiological concentrations of(More)
Protein kinase A and protein kinase C are involved in processes that enhance glutamate release at glutamatergic nerve terminals. However, it is not known whether these two kinases co-exist within the same nerve terminal, nor is it clear what impact their simultaneous activation may have on neurotransmitter release. In cerebrocortical nerve terminals,(More)