Learn More
Although not commonly used, correlation filters can track complex objects through rotations, occlusions and other distractions at over 20 times the rate of current state-of-the-art techniques. The oldest and simplest correlation filters use simple templates and generally fail when applied to tracking. More modern approaches such as ASEF and UMACE perform(More)
This paper compares principal component analysis (PCA) and independent component analysis (ICA) in the context of a baseline face recognition system, a comparison motivated by contradictory claims in the literature. This paper shows how the relative performance of PCA and ICA depends on the task statement, the ICA architecture, the ICA algorithm, and (for(More)
A statistical study is presented quantifying the effects of covariates such as gender, age, expression, image resolution and focus on three face recognition algorithms. Specifically, a Generalized Linear Mixed Effect model is used to relate probability of verification to subject and image covariates. The data and algorithms are selected from the Face(More)
The CSU Face Identification Evaluation System provides standard face recognition algorithms and standard statistical methods for comparing face recognition algorithms. The system includes standardized image pre-processing software, three distinct face recognition algorithms, analysis software to study algorithm performance, and Unix shell scripts to run(More)
The goal of the Multiple Biometrics Grand Challenge (MBGC) is to improve the performance of face and iris recognition technology from biometric samples acquired under unconstrained conditions. The MBGC is organized into three challenge problems. Each challenge problem relaxes the acquisition constraints in different directions. In the Portal Challenge(More)
Inexpensive " point-and-shoot " camera technology has combined with social network technology to give the general population a motivation to use face recognition technology. Users expect a lot; they want to snap pictures, shoot videos, upload, and have their friends, family and acquaintances more-or-less automatically recognized. Despite the apparent(More)
— The Good, the Bad, & the Ugly Face Challenge Problem was created to encourage the development of algorithms that are robust to recognition across changes that occur in still frontal faces. The Good, the Bad, & the Ugly consists of three partitions. The Good partition contains pairs of images that are considered easy to recognize. On the Good partition,(More)
This paper summarizes a study carried out on data from the Face Recognition Vendor Test 2006 (FRVT 2006). The finding of greatest practical importance is the discovery of a strong connection between a relatively simple measure of image quality and performance of state-of-the-art vendor algorithms in FRVT 2006. The image quality measure quantifies edge(More)
The FERET evaluation compared recognition rates for different semi-automated and automated face recognition algorithms. We extend FERET by considering when differences in recognition rates are statistically distinguishable subject to changes in test imagery. Nearest Neighbor clas-sifiers using principal component and linear discriminant subspaces are(More)