Learn More
Motor skills can take weeks to months to acquire and can diminish over time in the absence of continued practice. Thus, strategies that enhance skill acquisition or retention are of great scientific and practical interest. Here we investigated the effect of noninvasive cortical stimulation on the extended time course of learning a novel and challenging(More)
Despite its increasing use in experimental and clinical settings, the cellular and molecular mechanisms underlying transcranial direct current stimulation (tDCS) remain unknown. Anodal tDCS applied to the human motor cortex (M1) improves motor skill learning. Here, we demonstrate in mouse M1 slices that DCS induces a long-lasting synaptic potentiation(More)
Transcranial magnetic stimulation (TMS) was initially used to evaluate the integrity of the corticospinal tract in humans non-invasively. Since these early studies, the development of paired-pulse and repetitive TMS protocols allowed investigators to explore inhibitory and excitatory interactions of various motor and non-motor cortical regions within and(More)
The cerebellum is involved in the update of motor commands during error-dependent learning. Transcranial direct current stimulation (tDCS), a form of noninvasive brain stimulation, has been shown to increase cerebellar excitability and improve learning in motor adaptation tasks. Although cerebellar involvement has been clearly demonstrated in adaptation(More)
Convergent findings point to a left-sided specialization for the representation of learned actions in right-handed humans, but it is unknown whether analogous hemispheric specialization exists for motor skill learning. In the present study, we explored this question by comparing the effects of anodal transcranial direct current stimulation (tDCS) over(More)
During quiet wakefulness of 63 adult Wistar rats, 24 exhibited synchronous paroxysmal bursts consisting of spikes and spike and wave discharges, recorded in the amygdala and frontoparietal cortex. Discharges were associated with a sudden immobility of the rat and rhythmic twitches of vibrissae or cervicofacial musculature. As soon as the phenomena stopped,(More)
PURPOSE Topiramate (TPM) is a novel drug with broad antiepileptic effect in children and adults. In vitro studies suggest activity as sodium-channel blocker, as gamma-aminobutyric acid type A (GABAA)-receptor agonist and as non-N-methyl-D-aspartate (NMDA)-glutamate receptor antagonist. METHODS With transcranial magnetic stimulation (TMS), we evaluated(More)
PURPOSE OF REVIEW Transcranial direct current stimulation (tDCS) has shown preliminary success in improving motor performance and motor learning in healthy individuals, and restitution of motor deficits in stroke patients. This brief review highlights some recent work. RECENT FINDINGS Within the past years, behavioural studies have confirmed and specified(More)
The combination of pharmacology and transcranial magnetic stimulation to study the effects of drugs on TMS-evoked EMG responses (pharmaco-TMS-EMG) has considerably improved our understanding of the effects of TMS on the human brain. Ten years have elapsed since an influential review on this topic has been published in this journal (Ziemann, 2004). Since(More)
Consolidation of motor skills after training can occur in a time- or sleep-dependent fashion. Recent studies revealed time-dependent consolidation as a common feature of visuomotor tasks. We have previously shown that anodal transcranial direct current stimulation (tDCS) in combination with repeated motor training benefits consolidation by the induction of(More)