Learn More
A converging body of literature over the last 50 years has implicated the amygdala in assigning emotional significance or value to sensory information. In particular, the amygdala has been shown to be an essential component of the circuitry underlying fear-related responses. Disorders in the processing of fear-related information are likely to be the(More)
Cellular properties of CA1 neurons were studied in hippocampal slices 24 hr after acquisition of trace eyeblink conditioning in young adult and aging rabbits. Aging rabbits required significantly more trials than young rabbits to reach a behavioral criterion of 60% conditioned responses in an 80 trial session. Intracellular recordings revealed that CA1(More)
Aging is associated with learning deficits and a decrease in neuronal excitability, reflected by an enhanced post-burst afterhyperpolarization (AHP), in CA1 hippocampal pyramidal neurons. To identify the current(s) underlying the AHP altered in aging neurons, whole-cell voltage-clamp recording experiments were performed in hippocampal slices from young and(More)
Metabotropic receptor activation is important for learning, memory and synaptic plasticity in the amygdala and other brain regions. Synaptic stimulation of metabotropic receptors in basolateral amygdala (BLA) projection neurons evokes a focal rise in free Ca(2+) in the dendrites that propagate as waves into the soma and nucleus. These Ca(2+) waves initiate(More)
The cholinergic system is thought to play an important role in hippocampal-dependent learning and memory. However, the mechanism of action of the cholinergic system in these actions in not well understood. Here we examined the effect of muscarinic receptor stimulation in hippocampal CA1 pyramidal neurons using whole-cell recordings in acute brain slices(More)
Classical conditioning paradigms, such as trace conditioning, in which a silent period elapses between the offset of the conditioned stimulus (CS) and the delivery of the unconditioned stimulus (US), and delay conditioning, in which the CS and US coterminate, are widely used to study the neural substrates of associative learning. However, there are(More)
Learning-related reductions of the postburst afterhyperpolarization (AHP) in hippocampal pyramidal neurons have been shown ex vivo, after trace eyeblink conditioning. The AHP is also reduced by many neuromodulators, such as norepinephrine, via activation of protein kinases. Trace eyeblink conditioning, like other hippocampus-dependent tasks, relies on(More)
The formation of new synapses has been suggested to underlie learning and memory. However, previous work from this laboratory has demonstrated that hippocampus-dependent associative learning does not induce a net gain in the total number of hippocampal synapses and, hence, a net synaptogenesis. The aim of the present work was to determine whether(More)
The effect of hippocampal aspiration lesions on trace eyeblink conditioning was examined in young, freely-moving F1 hybrid rats (Fisher 344 x Brown Norway). Rats which received either bilateral neocortical or bilateral hippocampal aspiration lesions were compared with each other or with sham lesioned control rats. The rats were trained with a 250 ms tone(More)
Emotionally arousing events are particularly well remembered. This effect is known to result from the release of stress hormones and activation of beta adrenoceptors in the amygdala. However, the underlying cellular mechanisms are not understood. Small conductance calcium-activated potassium (SK) channels are present at glutamatergic synapses where they(More)