Learn More
Recursive procedures used for sequential calculations of polynomial basis coefficients in discrete orthogonal moments produce unreliable results for high moment orders as a result of error accumulation. This paper demonstrates accurate reconstruction of arbitrary-size images using full-order (orders as large as the image size) Tchebichef and Krawtchouk(More)
The three most common pathogenic species of Vibrio, Vibrio cholerae, Vibrio parahaemolyticus and Vibrio vulnificus, are of major concerns due to increased incidence of water- and seafood-related outbreaks and illness worldwide. Current methods are lengthy and require biochemical and molecular confirmation. A novel label-free forward light-scattering sensor(More)
High-throughput biological imaging uses automated imaging devices to collect a large number of microscopic images for analysis of biological systems and validation of scientific hypotheses. Efficient manipulation of these datasets for knowledge discovery requires high-performance computational resources, efficient storage, and automated tools for extracting(More)
Microscopic imaging is one of the most common techniques for investigating biological systems. In recent years there has been a tremendous growth in the volume of biological imaging data owing to rapid advances in optical instrumentation, high-speed cameras and fluorescent probes. Powerful semantic analysis tools are required to exploit the full potential(More)
Two-component systems (TCS) are the most prevalent gene regulatory mechanism in bacteria. A typical TCS is comprised of a histidine kinase (HK) and a partner response regulator (RR). Specific environment signals lead to autophosphorylation of different HKs, which in turn act as phosphoryl donors for autophosphorylation of their partner RRs. Nonpartner HKs(More)
  • Atul K. Singh, Amanda M. Bettasso, Euiwon Bae, Bartek Rajwa, Murat M. Dundar, Mark D. Forster +6 others
  • 2014
UNLABELLED We investigated the application capabilities of a laser optical sensor, BARDOT (bacterial rapid detection using optical scatter technology) to generate differentiating scatter patterns for the 20 most frequently reported serovars of Salmonella enterica. Initially, the study tested the classification ability of BARDOT by using six Salmonella(More)
Technologies for rapid detection of bacterial pathogens are crucial for securing the food supply. A light-scattering sensor recently developed for real-time identification of multiple colonies has shown great promise for distinguishing bacteria cultures. The classification approach currently used with this system relies on supervised learning. For accurate(More)
Figure 6. Symbols used for EDFSM and ERG. (a) start node (b) end node (c) intermediate node (d) transition. A composite event represented using petri-net, (c) A composite event with delay places represented using Figure 10. HL60 cells in different states during an apoptosis screen. (a) Hoechst 33342, (b) Annexin V FITC, (c) PI, (d) Merged image. The three(More)
Disease outbreaks due to contaminated food are a major concern not only for the food-processing industry but also for the public at large. Techniques for automated detection and classification of microorganisms can be a great help in preventing outbreaks and maintaining the safety of the nations food supply. Identification and classification of foodborne(More)