Learn More
The subthalamic nucleus-globus pallidus network plays a central role in basal ganglia function and dysfunction. To determine whether the relationship between activity in this network and the principal afferent of the basal ganglia, the cortex, is altered in a model of Parkinson's disease, we recorded unit activity in the subthalamic nucleus-globus pallidus(More)
Our understanding of the organization of the basal ganglia has advanced markedly over the last 10 years, mainly due to increased knowledge of their anatomical, neurochemical and physiological organization. These developments have led to a unifying model of the functional organization of the basal ganglia in both health and disease. The hypothesis is based(More)
Dopamine neurons play a key role in reward-related behaviors. Reward coding theories predict that dopamine neurons will be inhibited by or will not respond to aversive stimuli. Paradoxically, between 3 and 49% of presumed dopamine neurons are excited by aversive stimuli. We found that, in the ventral tegmental area of anesthetized rats, the population of(More)
The firing of neostriatal spiny neurons in response to an excitatory input is modulated and sculpted by a variety of factors. Neostriatal interneurons are phenotypically diverse and have properties that enable them to specifically, but differentially, influence the activity of spiny neurons. Each of the three types of GABAergic interneurons produces a(More)
The basal ganglia are a group of subcortical nuclei involved in a variety of processes including motor, cognitive and mnemonic functions. One of their major roles is to integrate sensorimotor, associative and limbic information in the production of context-dependent behaviours. These roles are exemplified by the clinical manifestations of neurological(More)
One of the functions of the excitatory subthalamic nucleus (STN) is to relay cortical activity to other basal ganglia structures. The response of the STN to cortical input is shaped by inhibition from the reciprocally connected globus pallidus (GP). To examine the activity in the STN-GP network in relation to cortical activity, we recorded single and(More)
Inappropriately synchronized beta (beta) oscillations (15-30 Hz) in the subthalamic nucleus (STN) accompany movement difficulties in idiopathic Parkinson's disease (PD). The cellular and network substrates underlying these exaggerated beta oscillations are unknown but activity in the external globus pallidus (GP), which forms a candidate pacemaker network(More)
A subpopulation of neurons in the globus pallidus projects to the neostriatum, which is the major recipient of afferent information to the basal ganglia. Given the moderate nature of this projection, we hypothesized that the pallidostriatal projection might exert indirect but powerful control over principal neuron activity by targeting interneurons, which(More)
The precise localization of D1 and D2 dopamine receptors within striatal neurons and circuits is crucial information for further understanding dopamine pharmacology. We have used subtype specific polyclonal and monoclonal antibodies against D1 and D2 dopamine receptors to determine their cellular and subcellular distributions, their colocalization, and(More)
Previous studies have demonstrated that the calcium-binding protein parvalbumin, is located within a population of GABAergic interneurons in the neostriatum of the rat. Anatomical studies have revealed that these cells receive asymmetrical synaptic input from terminals that are similar to identified cortical terminals and that they innervate neurons with(More)